精英家教网 > 高中数学 > 题目详情

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:

(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:

P(K2≥k)

0.050

0.010

0.001

K

3.841

6.635

10.828

K2=

【答案】解:(Ⅰ)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,
由P(A)=P(BC)=P(B)P(C),
则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,
故P(B)的估计值0.62,
新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,
故P(C)的估计值为,
则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;
∴A发生的概率为0.4092;
(Ⅱ)2×2列联表:

箱产量<50kg

箱产量≥50kg

总计

旧养殖法

62

38

100

新养殖法

34

66

100

总计

96

104

200

则K2= ≈15.705,
由15.705>6.635,
∴有99%的把握认为箱产量与养殖方法有关;
(Ⅲ)由题意可知:方法一: =5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),
=5×10.47,
=52.35(kg).
新养殖法箱产量的中位数的估计值52.35(kg)
方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:
(0.004+0.020+0.044)×5=0.034,
箱产量低于55kg的直方图面积为:
(0.004+0.020+0.044+0.068)×5=0.68>0.5,
故新养殖法产量的中位数的估计值为:50+ ≈52.35(kg),
所以新养殖法箱产量的中位数的估计值52.35(kg).
【解析】(Ⅰ)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;
(Ⅱ)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:
(Ⅲ)根据频率分布直方图即可求得其平均数.
【考点精析】通过灵活运用频率分布直方图和用样本的数字特征估计总体的数字特征,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差.在随机抽样中,这种偏差是不可避免的即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知坐标平面内三点P(3,-1),M(6,2),N,直线过点P.若直线与线段MN相交,则直线的倾斜角的取值范围( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网”,符合“低碳出行”的理念,已越来越多地引起了人们的关注某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值百分制按照分成5组,制成如图所示频率分直方图.

求图中x的值;

求这组数据的平均数和中位数;

已知满意度评分值在内的男生数与女生数的比为,若在满意度评分值为的人中随机抽取2人进行座谈,求恰有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C上的动点P)满足到定点A(-1,0)的距离与到定点B1,0)距离之比为

(1)求曲线C的方程。

(2)过点M(1,2)的直线与曲线C交于两点MN,若|MN|=4,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当曲线与直线有两个相异的交点时,实数的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线yx2-2x及直线x=0,xay=0围成的平面图形的面积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若存在实数k使得函数f(x)的值域为[﹣1,1],则实数a的取值范围是(
A.
B.
C.[1,3]
D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项等比数列{an},若2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+log3a3+…log3an , 求数列{ }的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(1)求k的取值范围;
(2)是否存在常数k,使得向量 共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案