精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1
(1)求椭圆C的方程;
(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.

【答案】
(1)

解:∵椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,

∴由题意得 ,解得a2=4,b2=3,

∴椭圆C的方程为


(2)

解:假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣ ,0),

∵PM=MN,∴P( ,2m),Q( ),

∴直线QM的方程为y=﹣3kx+m,

设A(x1,y1),由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,

,∴

设B(x2,y2),由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,

∴x2+ = ,∴x2=﹣

∵点N平分线段A1B1,∴

∴﹣ =﹣ ,∴k=

∴P(±2m,2m),∴ ,解得m=

∵|m|= <b= ,∴△>0,符合题意,

∴直线l的方程为y=


【解析】(1)由椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,列出方程组,求出a,b,由此能求出椭圆C的方程.(2)假设存在这样的直线l:y=kx+m,则直线QM的方程为y=﹣3kx+m,由 ,得(3+4k2)x2+8kmx+4(m2﹣3)=0,由 ,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件,能求出直线l的方程.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体积为 的球有一个内接正三棱锥P﹣ABC,PQ是球的直径,∠APQ=60°,则三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(
A.( ]
B.( ]
C.( ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中, ,则其前n项和Sn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.

(1)求甲乙两人采用不同分期付款方式的概率;
(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015全国统考II)设函数f(x)=ln(1+|x|)-,则使得f(x)f(2x-1)成立的x的取值范围是()
A.(,1)
B.(-(1,+
C.(-
D.(-,-,+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1(t为参数,且t≠0),其中0 , 在以O为极点x轴正半轴为极轴的极坐标系中,曲线C2:=2sin , C3:=2cos
(1)求C2与C3交点的直角坐标
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

  1. (2015·四川)如果函数f(x)=(m-2)x2+(n-8)x+1(m≥0, n≥0)在区间[, 2]上单调递减,则mn的最大值为( )


A.16
B.18
C.25
D.

查看答案和解析>>

同步练习册答案