精英家教网 > 高中数学 > 题目详情
18.已知tanα<0,cosα<0.
(1)求角α的集合;
(2)求角$\frac{α}{2}$的终边所在的象限;
(3)试判断sin$\frac{α}{2}$cos$\frac{α}{2}$,tan$\frac{α}{2}$的符号.

分析 (1)利用三角函数的符号,求出角的范围.
(2)利用(1)的结果求解即可.
(3)通过角的范围判断三角函数符号即可.

解答 解:(1)由tanα<0,cosα<0,可得α∈(2kπ+$\frac{π}{2}$,2kπ+π),k∈Z.
(2)α∈(2kπ+$\frac{π}{2}$,2kπ+π),k∈Z.
角$\frac{α}{2}$∈(kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$),k∈Z.
终边所在的象限是第一,三象限;
(3)α∈(2kπ+$\frac{π}{2}$,2kπ+π),k∈Z,sin$\frac{α}{2}$cos$\frac{α}{2}$=$\frac{1}{2}$sinα>0,
由(2)可知:tan$\frac{α}{2}$>0.

点评 本题考查三角函数线,三角函数符号的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)满足?x∈R,f(x)=f(2-x)且f(x)在区间[1,+∞)上单调递增,则满足$f(2x)<f(\frac{1}{3})$的x的取值范围是(  )
A.$(\frac{1}{5},\frac{5}{6})$B.$[\frac{1}{5},\frac{5}{6})$C.$(\frac{1}{6},\frac{5}{6})$D.$[\frac{1}{6},\frac{5}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(-6,3)$,$\overrightarrow b=(2\;,x)$,若向量$\overrightarrow a$、$\overrightarrow b$互相垂直,则x=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明:若两条平行直线都和第三条直线相交,则这三条直线共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥ABCD中,点M,N分别是△ABC和△ACD的重心,求证:MN∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.利达经销店销售一种建筑材料,每售出一吨建筑材料共需支付厂家及其它费用100元,当每吨售价为260元时,月销售量为45吨.该经销店为提高经济利润,准备采取降价的方式进行促销,经市场凋查发现:当每吨售价下降10元时,月销售量就会增加7.5吨,设每吨材料售价为x元,该经销店的月利润为y元.
(1)求y与x的函数关系式;
(2)该经销店要获得最大月利润,售价应定为每吨多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的不等式sinx>|t-2|存在实数解,则实数t的取值范围是(  )
A.(-∞,-1)∪(2,+∞)B.(1,2)C.(1,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f(1)<f(lg$\frac{x}{10}$)的x的取值范围是(0,1)∪(100,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y+x≤t}\\{y+2x≤4}\end{array}\right.$下,当2≤t≤4时,则函数z=3x+2y的最大值的范围是[6,8].

查看答案和解析>>

同步练习册答案