精英家教网 > 高中数学 > 题目详情
4.已知正项等比数列{an}满足a5+a4-a3-a2=8,则a6+a7的最小值为(  )
A.4B.16C.24D.32

分析 可判数列{an+an+1}也是各项均为正的等比数列,设数列{an+an+1}的公比为x,a2+a3=a,则x∈(1,+∞),a4+a5=ax,结合已知可得a=$\frac{8}{x-1}$,代入可得y=a6+a7的表达式,x∈(1,+∞),由导数求函数的最值即可.

解答 解:∵数列{an}是各项均为正的等比数列,
∴数列{an+an+1}也是各项均为正的等比数列,
设数列{an+an+1}的公比为x,a2+a3=a,
则x∈(1,+∞),a5+a4=ax,
∴有a5+a4-a3-a2=ax-a=8,即a=$\frac{8}{x-1}$,
∴y=a6+a7=ax2=$\frac{8{x}^{2}}{x-1}$,x∈(1,+∞),
求导数可得y′=$\frac{16x(x-1)-8{x}^{2}}{(x-1)^{2}}$=$\frac{8x(x-2)}{{(x-1)}^{2}}$,令y′>0可得x>2,
故函数在(1,2)单调递减,(2,+∞)单调递增,
∴当x=2时,y=a6+a7取最小值:32.
故选:D.

点评 本题考查等比数列的性质,涉及导数的应用,考查分析问题解决问题的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若a,b,c∈R,则下列结论中正确的是(  )
A.若a>b,则a2>b2B.若a>b,则ac2>bc2C.若ac>bc,则a>bD.若a>b,则a-c>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)2log32-log3$\frac{32}{9}+{log_3}$8
(2)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某人开车以40km/h的速度从A地到100km远处的B地,在B地停留1h后,再以50km/h的速度返回A地.
(1)把汽车行驶的路程s表示为时间t(从A地出发时开始计时)的函数;
(2)该汽车在匀速行驶中每小时的耗油量y(升)与速度x(km/h)的关系可以表示为y=$\frac{1}{128000}$x3-$\frac{3}{80}$x+8(0<x≤120),从A地到B地,该汽车要耗油多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x-1的定义域是[-1,2].
(1)求f(x-2)的定义域;
(2)求f(2x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数a>0,b>0,函数f(x)=ax2+b满足:对任意实数x,y,有f(xy)+f(x+y)≥f(x)f(y),则实数a的取值范围是(  )
A.(0,1]B.(0,1)C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{ax+1}{x+2a}$在(-2,2)内为增函数,则a的取值范围是(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax2+bx+c,a,b,c∈R,且a≠0.记M(a,b,c)为|f(x)|在[0,1]上的最大值,则$\frac{a+b+2c}{M(a,b,c)}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为(  )
A.y=2sin(2x-$\frac{π}{4}$)B.y=2sin(2x-$\frac{π}{4}$)或y=2sin(2x+$\frac{3π}{4}$)
C.y=2sin(2x+$\frac{3π}{4}$)D.y=2sin(2x-$\frac{3π}{4}$)

查看答案和解析>>

同步练习册答案