A. | 4 | B. | 16 | C. | 24 | D. | 32 |
分析 可判数列{an+an+1}也是各项均为正的等比数列,设数列{an+an+1}的公比为x,a2+a3=a,则x∈(1,+∞),a4+a5=ax,结合已知可得a=$\frac{8}{x-1}$,代入可得y=a6+a7的表达式,x∈(1,+∞),由导数求函数的最值即可.
解答 解:∵数列{an}是各项均为正的等比数列,
∴数列{an+an+1}也是各项均为正的等比数列,
设数列{an+an+1}的公比为x,a2+a3=a,
则x∈(1,+∞),a5+a4=ax,
∴有a5+a4-a3-a2=ax-a=8,即a=$\frac{8}{x-1}$,
∴y=a6+a7=ax2=$\frac{8{x}^{2}}{x-1}$,x∈(1,+∞),
求导数可得y′=$\frac{16x(x-1)-8{x}^{2}}{(x-1)^{2}}$=$\frac{8x(x-2)}{{(x-1)}^{2}}$,令y′>0可得x>2,
故函数在(1,2)单调递减,(2,+∞)单调递增,
∴当x=2时,y=a6+a7取最小值:32.
故选:D.
点评 本题考查等比数列的性质,涉及导数的应用,考查分析问题解决问题的能力,属中档题.
科目:高中数学 来源: 题型:选择题
A. | 若a>b,则a2>b2 | B. | 若a>b,则ac2>bc2 | C. | 若ac>bc,则a>b | D. | 若a>b,则a-c>b-c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1] | B. | (0,1) | C. | (0,2) | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=2sin(2x-$\frac{π}{4}$) | B. | y=2sin(2x-$\frac{π}{4}$)或y=2sin(2x+$\frac{3π}{4}$) | ||
C. | y=2sin(2x+$\frac{3π}{4}$) | D. | y=2sin(2x-$\frac{3π}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com