精英家教网 > 高中数学 > 题目详情

(本题满分10分)

如图,平面是边长为2的正方形,. 求异面直线所成角的大小.

(本题满分10分)

(文科)解:如图,延长DA至E,CB至F,使得DA=AE,CB=BF. 联结AF,PF,EF,DF. 因为ABCD是正方形,所以AD//BF,且AD=BF,所以AF//BD. 故(或其补角)的大小即为异面直线所成角的大小.

又正方形边长为2,PD=1,故.

所以,.

于是,

所以异面直线所成角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 17.本题满分10分已知函数的图象在y轴上的截距为,相邻的两个最值点是(1)求函数;(2)设,问将函数的图像经过怎样的变换可以得到 的图像?(3)画出函数在区间上的简图.

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

(本题满分10分)

(Ⅰ)设,求证:

(Ⅱ)设,求证:三数中至少有一个不小于2.

 

查看答案和解析>>

科目:高中数学 来源:2014届河南省高二上学期期末考试理科数学试卷(解析版) 题型:解答题

(本题满分10分)

如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,

⑴求证:A1C⊥平面BDE;

⑵求A1B与平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省扬州市宝应县高三下学期期初测试数学试卷 题型:解答题

(本题满分10分)

如图,已知正三棱柱的所有棱长都为2,为棱的中点,

(1)求证:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年辽宁省高二上学期期末考试数学理卷 题型:解答题

(本题满分10分)

如图,要计算西湖岸边两景点的距离,由于地形的限制,需要在岸上选取两点,现测得 ,,求两景点的距离(精确到0.1km).参考数据:  

 

 

查看答案和解析>>

同步练习册答案