精英家教网 > 高中数学 > 题目详情

如图2-23:已知正方体ABCD-A1B1C1D1,求证:平面AB1D1//平面BDC1


解析:

要证明两个平面平行,由面面平行的判定定理知,须在某一平面内寻找两条相交且与另一平面平行的直线

证明:∵ABC1D1,C1D1A1B1,∴AD1//BC1∴AB A1B1

∴四边形ABC1D1为平行四边形,又AD1平面AB1D1,BC1平面AB1D1,∴BC1//平面AB1D1,同理,BD//平面AB1D1,又BD∩BC1=B,

∴平面AB1D1//平面BDC1

点评:证面面平行,通常转化为证线面平行,而证线面平行又转化为证线线平行,所以关键是证线线平行。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的底面边长为2
3
,D是棱AC之中点,∠C1DC=60°.
(1)求证:AB1∥平面BC1D;
(2)求二面角D-BC1-C的大小;
(3)求点B1到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

A.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.已知矩阵A=
.
1-2
3-7
.

(1)求逆矩阵A-1
(2)若矩阵X满足AX=
3
1
,试求矩阵X.
C.坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
,(t∈R)交于A、B两点.求证:OA⊥OB.
D.已知x,y,z均为正数,求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南京模拟)A.选修4-1几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.
求证:ED2=EB•EC.
B.矩阵与变换
已知矩阵A=
2-1
-43
4-1
-31
,求满足AX=B的二阶矩阵X.
C.选修4-4 参数方程与极坐标
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π
3
),它们相交于A,B两点,求线段AB的长.
D.选修4-5 不等式证明选讲设a,b,c为正实数,求证:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1中,AB=2,BB1=2
3
,D为AC上的动点.
(Ⅰ)求五面体A-BCC1B1的体积;
(Ⅱ)当D在何处时,AB1∥平面BDC1,请说明理由;
(Ⅲ)当AB1∥平面BDC1时,求证:平面BDC1⊥平面ACC1A1

查看答案和解析>>

同步练习册答案