【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.
(1)求f(x)的解析式,并画出f(x)的图象;
(2)设g(x)=f(x)-k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?
【答案】(1) f(x)=,函数图象略.
(2)当k<-1或k>1时,有1个零点;当k=-1或k=1时,2个零点;
当-1<k<1时,3个零点.
【解析】
试题分析:(Ⅰ)先设x<0可得﹣x>0,则f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,由函数f(x)为奇函数可得f(x)=﹣f(﹣x),可求,结合二次函数的图象可作出f(x)的图象
(II)由g(x)=f(x)﹣k=0可得f(x)=k,结合函数的图象可,要求g(x)=f(x)﹣k的零点个数,只要结合函数的图象,判断y=f(x)与y=k的交点个数
试题解析:
(Ⅰ)当x≥0时,f(x)=x2﹣2x.
设x<0可得﹣x>0,则f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x
∵函数f(x)为奇函数,则f(x)=﹣f(﹣x)=﹣x2﹣2x
∴函数的图象如图所示
(II)由g(x)=f(x)﹣k=0可得f(x)=k
结合函数的图象可知
①当k<﹣1或k>1时,y=k与y=f(x)的图象有1个交点,即g(x)=f(x)﹣k有1个零点
②当k=﹣1或k=1时,y=k与y=f(x)有2个交点,即g(x)=f(x)﹣k有2个零点
③当﹣1<k<1时,y=k与y=f(x)有3个交点,即g(x)=f(x)﹣k有3个零点
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的上下两个焦点分别为,过点与轴垂直的直线交椭圆于两点, 的面积为,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭圆交于两个不同的点,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,求函数的最大值;
(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;
(3)当, 时,方程有唯一实数解,求正数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形的中心为点, 边所在的直线方程为.
(1)求边所在的直线方程和正方形外接圆的方程;
(2)若动圆过点,且与正方形外接圆外切,求动圆圆心的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 所围成封闭图形面积为,曲线是以曲线与坐标轴的交点为顶点的椭圆, 离心率为. 平面上的动点为椭圆外一点,且过点
引椭圆的两条切线互相垂直.
(1)求曲线的方程;
(2)求动点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是椭圆的左、右焦点,离心率为, 分别是椭圆的上、下顶点, .
(1)求椭圆的方程;
(2)若直线与椭圆交于相异两点,且满足直线的斜率之积为,证明:直线恒过定点,并采定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an},{bn},{cn}满足a1=a,b1=1,c1=3,对于任意n∈N* , 有bn+1= ,cn+1= .
(1)求数列{cn﹣bn}的通项公式;
(2)若数列{an}和{bn+cn}都是常数项,求实数a的值;
(3)若数列{an}是公比为a的等比数列,记数列{bn}和{cn}的前n项和分别为Sn和Tn , 记Mn=2Sn+1﹣Tn , 求Mn< 对任意n∈N*恒成立的a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com