精英家教网 > 高中数学 > 题目详情
等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn),均在函数y=2x+r(其中r为常数)的图象上.
(1)求r的值;
(11)记bn=2(log2an+1)(n∈N+
证明:对任意的n∈N+,不等式
b1+1
b1
b2+1
b2
bn+1
bn
n+1
成立.
分析:(1)由已知得 Sn=2n+r,利用数列中an与 Sn关系an=
Sn     n=1
Sn-Sn-1    n≥2
,求{an}的通项公式,再据定义求出r的值;
(2)由(1)知,an=2n-1,所以bn=2(log2an+1)=2(log22n-1+1)=2n,则
bn+1
bn
=
2n+1
2n
,所以
b1+1
b1
b2+1
b2
bn+1
bn
=
3
2
5
4
2n+1
2n
,再用数学归纳法证明不等式
3
2
5
4
2n+1
2n
n+1
成立.
解答:解:(1)因为对任意的n∈N*,点(n,Sn),均在函数y=2x+r(其中r为常数)的图象上
所以得Sn=2n+r,
当n=1时,a1=S1=2+r,
当n≥2时,an=Sn-Sn-1=2n+r-(2n-1+r )=2n-1
又因为{an}为等比数列,所以公比为2,r=-1,
(2)由(1)知,an=2n-1
∴bn=2(log2an+1)=2(log22n-1+1)=2n
bn+1
bn
=
2n+1
2n

所以
b1+1
b1
b2+1
b2
bn+1
bn
=
3
2
5
4
2n+1
2n

下面用数学归纳法证明不等式
3
2
5
4
2n+1
2n
n+1
成立.
①当n=1时,左边=
3
2
,右边=
2
,因为
3
2
2
,所以不等式成立.
②假设当n=k时不等式成立,即
3
2
5
4
2k+1
2k
k+1
成立.
则当n=k+1时,左边=
3
2
5
4
2k+1
2k
2k+3
2k+2
k+1
2k+3
2k+2
=
(2k+3)2
4(k+1)
=
(k+1)+1+
1
4(k+1)
k+2

所以当n=k+1时,不等式也成立.
由①、②可得不等式恒成立.
∴不等式
b1+1
b1
b2+1
b2
bn+1
bn
n+1
成立.
点评:本题重点考查数学归纳法,考查等比数列的定义,解题的关键是利用数列中an与 Sn关系an=
Sn     n=1
Sn-Sn-1    n≥2
,正确掌握数学归纳法的证题步骤.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)叙述并证明等比数列的前n项和公式;
(2)已知Sn是等比数列{an} 的前n项和,S3,S9,S6成等差数列,求证:a1+k,a7+k,a4+k(k∈N)成等差数列;
(3)已知Sn是正项等比数列{an} 的前n项和,公比0<q≤1,求证:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn是等比数列{an}的前n项和,对于任意正整数n,恒有Sn>0,则等比数列{an}的公比q的取值范围为
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)统计某校高三年级100名学生的数学月考成绩,得到样本频率分布直方图如下图所示,已知前4组的频数分别是等比数列{an}的前4项,后6组的频数分别是等差数列{bn}的前6项,
(1)求数列{an}、{bn}的通项公式;
(2)设m、n为该校学生的数学月考成绩,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

同步练习册答案