精英家教网 > 高中数学 > 题目详情

【题目】已知各项均为正数数列的前项和满足.

(1)求数列的通项公式;;

(2)若数列满足,求数列的前项和.

【答案】(1);(2).

【解析】试题分析:(1)由,∴,于是可得,;(2)根据(1)求得

,利用裂项相消法可求得数列的前项和.

试题解析:(1)∵

.

又数列各项均为正数,

,∴,∴.

时,

时,

又∵也满足上式,∴.

(2)据(1)求解,得

.

∴数列的前项和

.

【方法点晴】本题主要考查等差数列的通项以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从8名运动员中选4人参加米接力赛,在下列条件下,各有多少种不同的排法?

(1)甲、乙两人必须入选且跑中间两棒;

(2)若甲、乙两人只有一人被选且不能跑中间两棒;

(3)若甲、乙两人都被选且必须跑相邻两棒;

(4)甲不在第一棒.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:方程x2+(m2-6m)y2=1表示双曲线,q:函数f(x)=x3-mx2+(2m+3)x在(-∞,+∞)上是单调增函数.

(1)若p是真命题,求实数m的取值范围;

(2)若p或q是真命题,p且q是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC所对应的边分别为abc

)若abc成等差数列,证明:sinA+sinC=2sinA+C);

)若abc成等比数列,求cosB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数且.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性;

(3)当时,,若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中的说法正确的是( )

A. 若向量,则存在唯一的实数使得

B. 命题“若,则”的否命题为“若,则”;

C. 命题“,使得”的否定是:“,均有”;

D. 命题“在中,的充要条件”的逆否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

1)分别估计该市的市民对甲,乙两部门评分的中位数;

2)分别估计该市的市民对甲,乙两部门的评分高于90的概率;

3)根据茎叶图分析该市的市民对甲,乙两部门的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地村庄P与村庄O的距离为千米,从村庄O出发有两条道路,经测量,的夹角为,OP与的夹角满足(其中),现要经过P修一条直路分别与道路交汇于两点,并在处设立公共设施.

(1)已知修建道路的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点之间的距离;

(2)考虑环境因素,需要对段道路进行翻修,段的翻修单价分别为n元/千米和元/千米,要使两段道路的翻修总价最少,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为自然对数的底数).

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

同步练习册答案