精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)求线段的长和的积.

【答案】(1)曲线的直角坐标方程为:.直线的普通方程为.(2)8; 14

【解析】

(1)由,也即,即得曲线的直角坐标方程为.

消去参数得直线的普通方程为.(2)将直线的参数方程代入中得,再利用直线参数方程t的几何意义求线段的长和的积.

(1)由,也即

∴曲线的直角坐标方程为:.

消去参数得直线的普通方程为.

(2)将直线的参数方程代入中,

得:,则有.

不妨设两点对应的参数分别为

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线外一点M作抛物线的两条切线,两切点的连线段称为点M对应的切点弦已知抛物线为,点PQ在直线l上,过PQ两点对应的切点弦分别为ABCD

当点Pl上移动时,直线AB是否经过某一定点,若有,请求出该定点的坐标;如果没有,请说明理由

时,点PQ在什么位置时,取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交异于极点的四点

)若曲线关于曲线对称,求的值,并把曲线化成直角坐标方程.

)求,当时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019112日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设的长为毫米.(注:,其中为球半径,为圆柱底面积,为圆柱的高)

1)求胶囊中药物的体积关于的函数关系式;

2)如何设计的长度,使得最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,

(1)当时,求上的最大值和最小值;

(2)当时,过点作函数的图象的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点为,平面内PQ同时满足

求顶点A的轨迹E的方程;

过点作两条互相垂直的直线,直线被点A的轨迹E截得的弦分别为,设弦的中点分别为M试问:直线MN是否恒过一个顶点?若过定点,请求出该顶点,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,平面ABCFBC的中点,且.

1)求证:平面ADF

2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顺次连接椭圆的四个顶点恰好构成了一个边长为且面积为的菱形。

(1)求椭圆的方程;

(2)是椭圆上的两个不同点,若直线的斜率之积为(以为坐标原点),线段上有一点满足,连接并延长交椭圆于点,求椭圆的值.

查看答案和解析>>

同步练习册答案