精英家教网 > 高中数学 > 题目详情

设函数f(x)=3sinx+2cosx+1。若实数abc使得af(x)+bf(x??c)=1对任意实数x恒成立,则的值等于(    )

A.     B.        C. ??1         D. 1

C


解析:

c=π,则对任意的xR,都有f(x)+f(x??c)=2,于是取c=π,则对任意的xRaf(x)+bf(x??c)=1,由此得

一般地,由题设可得,其中,于是af(x)+bf(x??c)=1可化为

,即

,所以

由已知条件,上式对任意xR恒成立,故必有

b=0,则由(1)知a=0,显然不满足(3)式,故b≠0。所以,由(2)知sinc=0,故c=2kπ+πc=2(kZ)。当c=2时,cosc=1,则(1)、(3)两式矛盾。故c=2kπ+π(kZ),cosc=??1。由(1)、(3)知,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
)
,(ω>0),x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
α
4
+
π
12
)=
9
5
,求sinαtanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(2x-
π
3
)
的图象为C,给出下列命题:
①图象C关于直线x=
11
12
π
对称;
②函数f(x)在区间(-
π
12
12
)
内是增函数;
③函数f(x)是奇函数;
④图象C关于点(
π
3
,0)
对称.
⑤|f(x)|的周期为π
其中,正确命题的编号是
①②
①②
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)在一次人才招聘会上,有A、B、C三种不同的技工面向社会招聘.已知某技术人员应聘A、B、C三种技工被录用的概率分别是0.8、0.5、0.2 (允许受聘人员同时被多种技工录用).
(I)求该技术人员被录用的概率;
(Ⅱ)设X表示该技术人员被录用的工种数与未被录用的工种数的积.
i) 求X的分布列和数学期望;
ii)“设函数f(x)=3sin
(x+X)4
π,x∈R
是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=3sin(ωx+
π
6
)
,ω>0,x∈(-∞,+∞),且以
π
2
为最小正周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=-3,b=1,△ABC的面积为
3
2
  ,求
b+c
sinB+sinC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sin(2x+
π
6
)
(x∈R).
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)是否可以由函数f(x)的图象经过平移变换得到一个偶函数的图象?若可以,说明怎样变换得到;若不可以,说明理由.

查看答案和解析>>

同步练习册答案