精英家教网 > 高中数学 > 题目详情

【题目】将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个阶段序,当且仅当两个阶色序对应位置上的颜色至少有一个不相同时,称为不同的阶色序.若某圆的任意两个阶段序均不相同,则称该圆为阶魅力圆.3阶魅力圆中最多可有的等分点个数为

A.4 B.6

C. 8 D.10

【答案】C

【解析】

试题分析:阶色序”中,每个点的颜色有两种选择,故“阶色序”共有种,一方面,个点可以构成个“阶色序”,故“阶魅力圆”中的等分点的个数不多于个;另一方面,若,则必需包含全部共个“阶色序”,不妨从(红,红,红)开始按逆时针方向确定其它各点颜色,显然“红,红,红,蓝,蓝,蓝,红,蓝”符合条件.故“阶魅力圆”中最多可有个等分点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E的右焦点与抛物线的焦点重合,点M在椭圆E上.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)设,直线与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在 人或 人以下,每人需交费用为 元;若旅行团人数多于 人,则给予优惠:每多 人,人均费用减少 元,直到达到规定人数 人为止.旅行社需支付各种费用共计 元.

写出每人需交费用 关于人数 的函数;

旅行团人数为多少时,旅行社可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为梯形, 平面 中点.

(1)求证:平面平面

(2)线段上是否存在一点,使平面?若有,请找出具体位置,并进行证明:若无,请分析说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设:实数满足不等式:函数无极值点.

1)若为假命题,为真命题,求实数的取值范围;

2)已知为真命题,并记为,且,若的必要不充分条件,求正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)

立体几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?

(2)经统计得,选择做立体几何题的学生正答率为,且答对的学生中男生人数是女生人数的5倍,现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记抽取的两人中答对的人数为,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】做一个无盖的圆柱形水桶,若要使其体积是,且用料最省,则圆柱的底面半径为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一次函数f(x)为增函数,且f(f(x))4x9g(x)mxm3(mR).

(1)x[-1,2]时,若不等式g(x)0恒成立,求m的取值范围;

(2)如果函数F(x)f(x)g(x)为偶函数,求m的值;

(3)当函数f(x)g(x)满足f(g(x))g(f(x))时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

1)求的值;

2)设,若函数的图象有且只有一个公共点,求实数的取值范围.

查看答案和解析>>

同步练习册答案