精英家教网 > 高中数学 > 题目详情
16.设抛物线C:y2=4x,过定点(m,0)的直线l与抛物线C交于A、B两点,连结A及抛物线顶点O的直线与准线交于点B′,直线BO与准线交于点A′,且AA′与BB′均平行于x轴.
(1)求m的值;
(2)求四边形ABB′A′面积的最小值.

分析 (1)通过设直线l方程:x=ty+m,并与抛物线方程联立,利用A'、O、B三点共线,计算即得结论;
(2)依题意可知A′(-1,y1)、B′(-1,y2),利用S四边形ABB′A′=$\frac{1}{2}$(AA′+BB′)h化简计算即得结论.

解答 解:(1)设$A(\frac{{{y_1}^2}}{4},{y_1}),B(\frac{{{y_2}^2}}{4},{y_2})$,
设直线l方程:x=ty+m,并与抛物线方程联立,
消去x整理得:y2-4ty-4m=0,
∴$\left\{\begin{array}{l}{y_1}+{y_2}=4t\\{y_1}{y_2}=-4m\end{array}\right.$,
依题意A',O,B三点共线,
∴kAO=kBO,即$\frac{{y}_{1}}{-1}$=$\frac{{y}_{2}}{\frac{{{y}_{2}}^{2}}{4}}$,
∴y1y2=-4,
∴m=1;
(2)依题意A′(-1,y1),B′(-1,y2),
S四边形ABB′A′=$\frac{1}{2}$(AA′+BB′)h
=$\frac{1}{2}$($\frac{{{y}_{1}}^{2}}{4}$+1+$\frac{{{y}_{2}}^{2}}{4}$+1)|y1-y2|
=$\frac{1}{2}(\frac{{{y_1}^2+{y_2}^2}}{4}+2)\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}$
=$8({t^2}+1)\sqrt{{t^2}+1}≥8$,
当t=0时等号成立,此时lAB:x=1.

点评 本题考查直线与圆锥曲线的关系,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列命题正确的是(  )
A.方程$\frac{x}{y-2}=1$表示斜率为1,在y轴上的截距是2的直线
B.△ABC的顶点坐标分别为A(0,3),B(-2,0),C(2,0),则中线AO的方程是x=0
C.到x轴距离为5的点的轨迹方程是y=5
D.曲线2x2-3y2-2x+m=0通过原点的充要条件是m=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B,并且D点在平面ABC内的射影落在AB上.
(1)证明:AD⊥平面DBC;
(2)求三棱锥D-ABC的体积;
(3)若在四面体D-ABC内有一球,当球的体积最大时,球的半径是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知0<x<y<3,求$\frac{1}{x}+\frac{1}{y-x}+\frac{1}{3-y}$的最小值
(2)若0<x<y<a,不等式$\frac{1}{x^2}+\frac{1}{{{{(y-x)}^2}}}+\frac{1}{{{{(a-y)}^2}}}$≥9恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e∈[$\sqrt{2}$,2],则其渐近线的倾斜角的取值范围是(  )
A.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{3π}{4}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$]C.[$\frac{π}{6}$,$\frac{π}{4}$]∪[$\frac{4π}{3}$,$\frac{5π}{6}$]D.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,⊙O的半径OC垂直于直径AB,M为OB上一点,CM的延长线交⊙O于N,过N点的切线交AB的延长线于P.
(1)求证:PM2=PB•PA;
(2)若⊙O的半径为3,OB=$\sqrt{3}$OM,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E的中心在原点,焦点在坐标轴上,且经过两点M(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)和N(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆E的标准方程;
(2)设F为椭圆的右焦点,过点F作斜率为1的直线l交椭圆于AB两点,以AB为直径的圆O交y轴于P、Q两点,劣弧长PQ记为d,求$\frac{d}{|AB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E,若AB=8,DC=4,则DE=(  )
A.$\sqrt{2}$B.2C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知两定点A(-2,1),B(1,3),动点P在直线x-y+1=0上,当|PA|+|PB|取最小值时,这个最小值为(  )
A.$\sqrt{5}$B.3C.$\sqrt{13}$D.$\sqrt{17}$

查看答案和解析>>

同步练习册答案