【题目】已知正方形的中点为直线和的交点,正方形一边所在直线的方程为,求其他三边所在直线的方程.
【答案】解: ∴中点坐标为M(-1,0)
点M到直线的距离
设与的直线方程为
∴(舍)或∴
设与垂直两线分别为,则(-1,0)到这两条直线距离相等且为,
设方程为
∴∴或9 ∴
【解析】设与直线l:x+3y-5=0平行的边的直线方程为l1:x+3y+c=0.
由得正方形的中心为P(-1,0),由点P到两直线l,l1的距离相等,得,解得c=7或c=-5(舍去).
∴l1:x+3y+7=0.又∵正方形另两边所在直线与l垂直,
∴设另两边方程为3x-y+a=0,3x-y+b=0.
∵正方形中心到四条边的距离相等,∴,得a=9或-3,
∴另两条边所在的直线方程为3x-y+9=0,3x-y-3=0.
∴另三边所在的直线方程分别为3x-y+9=0,x+3y+7=0,3x-y-3=0.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:
(1)PA⊥底面ABCD;
(2)平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).
(1)求h(a).
(2)是否存在实数m>n>3,当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平行四边形ABCD中,A(1,2),B(2,1),中心E(3,3).
(1)判断平行四边形ABCD是否为正方形;
(2)点P(x,y)在平行四边形ABCD的边界及内部运动,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+alnx(a为实常数)
(1)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com