分析 先求出f(-1)=-2×(-1)-1=1,从而f(f(-1))=f(1),由此能求出f(f(-1))的值.由|f(x)|$<\frac{1}{2}$,得:当-1≤x<0时,|f(x)|=|-2x-1|<$\frac{1}{2}$;当0<x≤1时,|f(x)|=|-2x+1|<$\frac{1}{2}$,由此能求出|f(x)|$<\frac{1}{2}$的解集.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-2x-1,-1≤x<0}\\{-2x+1,0<x≤1}\end{array}\right.$,
∴f(-1)=-2×(-1)-1=1,
f(f(-1))=f(1)=-2×1+1=-1.
∵|f(x)|$<\frac{1}{2}$,
∴当-1≤x<0时,|f(x)|=|-2x-1|<$\frac{1}{2}$,解得-$\frac{3}{4}<x<-\frac{1}{4}$;
当0<x≤1时,|f(x)|=|-2x+1|<$\frac{1}{2}$,解得$\frac{1}{4}<x<\frac{3}{4}$.
∴|f(x)|$<\frac{1}{2}$的解集为(-$\frac{3}{4}$,$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{3}{4}$).
故答案为:-1,(-$\frac{3}{4}$,$\frac{1}{4}$)∪($\frac{1}{4}$,$\frac{3}{4}$).
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | 等腰或直角三角形 | B. | 等边三角形 | ||
C. | 直角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | Sn=2n+1-1 | B. | an=2n-1 | C. | Sn=2n+1-2 | D. | an=2n+1-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4π | B. | $\frac{9π}{2}$ | C. | $\frac{125π}{6}$ | D. | $\frac{32π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com