【题目】如图,是边长为2的正方形,平面,且.
(Ⅰ)求证:平面平面;
(Ⅱ)线段上是否存在一点,使二而角等于45°?若存在,请找出点的位置;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标点xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ=6.
(1)A为曲线C1上的动点,点M在线段OA上,且满足|OM||OA|=36,求点M的轨迹C2的直角坐标方程;
(2)点E的极坐标为(4,),点F在曲线C2上,求△OEF面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足,,设,.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,,求实数的最小值;
(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成(,且,)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为:(为参数),以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,将曲线绕极点顺时针旋转后得到曲线的曲线记为.
(1)求曲线和的极坐标方程;
(2)设和的交点为,,求的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:
经计算: , , , , , , ,其中分别为试验数据中的温度和死亡株数, .
(1)若用线性回归模型,求关于的回归方程(结果精确到);
(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.
(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;
(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据, ,……, ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代著名数学家刘徽的杰作《九章算术注》是中国最宝贵的数学遗产之一,书中记载了他计算圆周率所用的方法.先作一个半径为1的单位圆,然后做其内接正六边形,在此基础上做出内接正边形,这样正多边形的边逐渐逼近圆周,从而得到圆周率,这种方法称为“刘徽割圆术”.现设单位圆的内接正边形的一边为,点为劣弧的中点,则是内接正边形的一边,现记,,则( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于某种类型的口服药,口服小时后,由消化系统进入血液中药物浓度(单位)与时间小时的关系为,其中,为常数,对于某一种药物,,.
(1)口服药物后______小时血液中药物浓度最高;
(2)这种药物服药小时后血液中药物浓度如下表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
0.9545 | 0.9304 | 0.6932 | 0.4680 | 0.3010 | 0.1892 | 0.1163 | 0.072 |
一个病人上午8:00第一次服药,要使得病人血液中药物浓度保持在0.5个单位以上,第三次服药时间是______(时间以整点为准)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,且为常数).
(1)若函数的图象在处的切线的斜率为(为自然对数的底数),求的值;
(2)若函数在区间上单调递增,求的取值范围;
(3)已知,且.求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com