精英家教网 > 高中数学 > 题目详情

【题目】已知命题:函数,命题:集合.

1)若命题中有且仅有一个为真命题,求实数的取值范围;

2)设皆为真命题时,的取值范围为集合,已知,若,求的取值范围.

【答案】1;(2

【解析】

由题意可得,由为真命题时,,当为真命题时,

1)当为真命题,为假命题时,;当为真命题,为假命题时,则,求两种情况并集即可;

2)当都为真时,可得,利用基本不等式可求集合,进而可求,然后根据,即可求出结果.

由题意可得,由,可得解可得,;

所以为真命题时,

∵集合

①若,则,即;

②若,则,解可得,

综上可得,,即为真命题时,

1)因为命题中有且仅有一个为真命题

为真命题,为假命题时,则

为真命题,为假命题时,则

综上;

2)当都为真时,即,即

,所以

,以,即;

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.

(1)证明:直线∥面

(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为

1)求的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数上的最大值为.

1)若点的图象上,求函数图象的对称中心;

2)将函数的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数的图象,若上为增函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系Oxyz中,已知正四棱锥PABCD的所有棱长均为6,底面正方形ABCD的中心在坐标原点,棱ADBC平行于x轴,ABCD平行于y轴,顶点Pz轴的正半轴上,点MN分别在线段PABD上,且

1)求直线MNPC所成角的大小;

2)求锐二面角APND的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且与双曲线有相同的焦点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,点满足,点,若直线斜率为,求面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若用“五点法”在给定的坐标系中,画出函数[0,π]上的图象.

(2)若偶函数,求

(3)在(2)的前提下,将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191216日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40.

1)完成下列列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?

了解

不了解

合计

男性

女性

合计

2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线.

(1)若抛物线和直线没有公共点,求的取值范围;

(2)若,且抛物线和直线只有一个公共点时,求的值.

查看答案和解析>>

同步练习册答案