科目:高中数学 来源: 题型:
频率分布表 | ||
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | m | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | |
90.5~100.5 | n | |
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
一次购物量n(件) | 1≤n≤3 | 4≤n≤6 | 7≤n≤9 | 10≤n≤12 | n≥13 |
顾客数(人) | x | 20 | 10 | 5 | y |
结算时间(分钟/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2014届广东省广州市越秀区高三上学期摸底考试理科数学试卷(解析版) 题型:解答题
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量(件) |
1≤n≤3 |
4≤n≤6 |
7≤n≤9 |
10≤n≤12 |
n≥13 |
顾客数(人) |
20 |
10 |
5 |
||
结算时间(分钟/人) |
0.5 |
1 |
1.5 |
2 |
2.5 |
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定与的值;
(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省泉州市高三毕业班质量检查理科数学试卷(解析版) 题型:解答题
(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 |
||||||
甲机床零件频数 |
2 |
3 |
20 |
20 |
4 |
1 |
乙机床零件频数 |
3 |
5 |
17 |
13 |
8 |
4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
|
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com