精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(ax+3)ex(a≠0),其中e是自然对数的底数.
(1)若函数图象在x=0处的切线方程为2x+y-3=0,求a的值;
(2)求函数f(x)的单调区间;
(3)设函数g(x)=
1
2
x-lnx+t,当a=-1时,存在x∈(0,+∞)使得f(x)≤g(x)成立,求t的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:计算题,函数的性质及应用,导数的综合应用
分析:(1)求导f′(x)=(ax+3+a)ex,从而由题意得f′(0)=(3+a)e0=-2;从而求a;
(2)由导数f′(x)=(ax+3+a)ex的正负讨论函数的单调区间;
(3)当a=-1时,f(x)=(-x+3)ex,从而化f(x)≤g(x)为t≥(-x+3)ex-
1
2
x+lnx;令F(x)=(-x+3)ex-
1
2
x+lnx,从而化为函数的最值问题.
解答: 解:(1)∵f(x)=(ax+3)ex
∴f′(x)=(ax+3+a)ex
又∵函数图象在x=0处的切线方程为2x+y-3=0,
∴f′(0)=(3+a)e0=-2;
解得,a=-5;
(2)∵f′(x)=(ax+3+a)ex
∴①当a>0时,解f′(x)>0得,x>-
3+a
a

故函数f(x)在(-∞,-
3+a
a
)上是减函数,在(-
3+a
a
,+∞)上是增函数;
②当a<0时,解f′(x)>0得,x<-
3+a
a

故函数f(x)在(-∞,-
3+a
a
)上是增函数,在(-
3+a
a
,+∞)上是减函数;
(3)当a=-1时,f(x)=(-x+3)ex
f(x)≤g(x)可化为t≥(-x+3)ex-
1
2
x+lnx;
令F(x)=(-x+3)ex-
1
2
x+lnx,
则F′(x)=(-x+2)ex+
1
2x
(2-x)=(2-x)(ex+
1
2x
);
故F(x)在(0,2)上单调递增,在(2,+∞)上单调递减,
且当x→+∞时,F(x)→-∞;
故对任意t,都存在x∈(0,+∞)使得f(x)≤g(x)成立,
故t∈R.
点评:本题考查了导数的综合应用及存在性问题的处理方法应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:
(1)cos(90°+α)+sin(180°-α)-sin(180°+α)-sin(-α).
(2)
sin(π-α)
tan(π+α)
cot(
π
2
-α)
tan(
π
2
+α)
cos(-α)
sin(2π-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
动点M(x,y)分别到两定点(-3,0)、(3,0)连线的斜率之乘积为
16
9
,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左、右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)若∠F1MF2=90°,则S F1MF2=32;
(3)当x<0时,△F1MF2的内切圆圆心在直线x=-3上;
(4)设A(6,1),则|MA|+|MF2|的最小值为2
2

其中正确命题的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,则下列不等关系正确的是(  )
A、a2>b2
B、ac2>bc2
C、2a>2b
D、log2a>log2b

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,建立平面直角坐标系xoy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-
1
20
(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(Ⅰ)求炮的最大射程;
(Ⅱ)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是抛物线y2=4x上的一个动点,Q是圆(x-3)2+(y-1)2=1上的一个动点,N(1,0)是一个定点,则|PQ|+|PN|的最小值为(  )
A、3
B、4
C、5
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
lnx
x-1
+1,当x∈(1,+∞)时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a,b>0)与抛物线y2=2px(p>0)有共同的焦点F,过点F作与x轴垂直的直线l交抛物线于A、B两点,且与双曲线在第一象限内的交点为P,O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λ22=
5
8
,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
x
-x是(  )
A、奇函数
B、偶函数
C、既是奇函数又是偶函数
D、非奇非偶函数

查看答案和解析>>

同步练习册答案