精英家教网 > 高中数学 > 题目详情

【题目】某工厂今年前三个月生产某种产品的数量统计表如下:

为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟产品的月产量与月份的关系,模拟函数可选择二次函数为常数且),或函数为常数).已知4月份的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,请说明理由.

【答案】选用y=﹣0.8×0.5x+1.4作为模拟函数更好,理由见解析

【解析】

分别求出两函数解析式,预算第四个月的产量,根据误差大小作出判断.

若选择二次函数模型,则

解得,∴fx)=﹣0.05x2+0.35x+0.7

f4)=1.3

若选择函数模型,则

解得,∴gx)=﹣0.8×0.5x+1.4

g4)=1.35

显然g4)更接近于1.37

故选用y=﹣0.8×0.5x+1.4作为模拟函数更好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 ,若,且的图象相邻的对称轴间的距离不小于.

(1)求的取值范围.

(2)若当取最大值时, ,且在中, 分别是角的对边,其面积,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位: )数据,将数据分组如下表:

1)在答题卡上完成频率分布表

2)以表中的频率作为概率,估计重量落在中的概率及重量小于2.45的概率是多少?

3统计方法中,同一组数据常用该组区间的中点值例如区间的中点值是2.25作为代表.据此估计这100个数据的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性并求极值;

(Ⅱ)若点在函数上,当,且时,证明: 是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取记录如下:

甲:

乙:

用茎叶图表示这两组数据.

)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为派哪位学生参加合适?请说明理由

)若将频率视为概率,对甲同学在今后的三次数学竞赛成绩进行预测,记这次成绩中高于分的次数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数在区间上的值域

(2)把函数图象所有点的上横坐标缩短为原来的倍,再把所得的图象向左平移个单位长度,再把所得的图象向下平移1个单位长度,得到函数 若函数关于点对称

i)求函数的解析式;

ii)求函数单调递增区间及对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市甲水厂每天生产万吨的生活用水,其每天固定生产成本为万元,居民用水的税费价格为每吨元,该市居民每天用水需求量是在(单位:万吨)内的随机数,经市场调查,该市每天用水需求量的频率分布直方图如图所示,设(单位:万吨, )表示该市一天用水需求量(单位:万元)表示甲水厂一天销售生活用水的利润(利润=税费收入-固定生产成本),注:当该市用水需求量超过万吨时,超过的部分居民可以用其他水厂生产的水,甲水厂只收成本厂供应的税费,该市每天用水需求量的概率用频率估计.

(1)求的值,并直接写出表达式;

(2)求甲水厂每天的利润不少于万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题:

①设A,B是两个定点,k为非零常数,若|PA|-|PB|=k,则P的轨迹是双曲线;

②过定圆C上一定点A作圆的弦AB,O为原点,若.则动点P的轨迹是椭圆;

③方程的两根可以分别作为椭圆和双曲线的离心率;

④双曲线与椭圆有相同的焦点.

其中正确命题的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201818日,中共中央国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新材料的含量x(单位:克)的关系为:当时,yx的二次函数;当时,测得数据如下表(部分):

x(单位:克)

0

1

2

9

y

0

3

1)求y关于x的函数关系式

2)当该产品中的新材料含量x为何值时,产品的性能指标值最大.

查看答案和解析>>

同步练习册答案