精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线与斜率为且过抛物线焦点的直线交于两点,满足弦长.

1)求抛物线的标准方程;

2)已知为抛物线上任意一点,为抛物线内一点,求的最小值,以及此时点的坐标.

【答案】1;(2的最小值为,此时点的坐标为.

【解析】

1)写出直线的方程,联立抛物线方程,运用韦达定理和弦长公式,可得,进而得到抛物线的方程;

2)过作抛物线的准线的垂线,垂足为,运用抛物线的定义和三点共线取得最小值,可得所求的坐标.

1)斜率为且过抛物线焦点的直线的方程为

联立抛物线,可得

,可得

由弦长公式可得,可得

则抛物线的标准方程为

2)过作抛物线的准线的垂线,垂足为

由抛物线的定义可得

最小值为到准线的距离,所以

此时的纵坐标为,代入抛物线方程,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数fx)的极值点的个数;

2)若fx)有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若对于任意的为自然对数的底数),恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五边形中,四边形为长方形,为边长为的正三角形,将沿折起,使得点在平面上的射影恰好在上.

(Ⅰ)当时,证明:平面平面

(Ⅱ)若,求平面与平面所成二面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点轴的正半轴,且过点,过的直线交抛物线于两点.

1)求抛物线的方程;

2)设直线是抛物线的准线,求证:以为直径的圆与直线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中老年人群体中,肠胃病是一种高发性疾病某医学小组为了解肠胃病与运动之间的联系,调查了50位中老年人每周运动的总时长(单位:小时),将数据分成[04),[48),[814),[1416),[1620),[2024]6组进行统计,并绘制出如图所示的柱形图.

图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.

每周运动的总时长不少于14小时为运动较多.

1)根据题意,完成下面的2×2列联表:

有肠胃病

无肠胃病

总计

运动较多

运动较少

总计

2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?

附:K2na+b+c+d

PK2k

0.0.50

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

【答案】I;(II.

【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.

试题解析:(Ⅰ)由,得,即

所以曲线的极坐标方程为

II)将的参数方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范围是.

型】解答
束】
23

【题目】已知均为正实数.

(Ⅰ)若,求证:

(Ⅱ)若,求证:

查看答案和解析>>

同步练习册答案