【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos θ.
(1)求出圆C的直角坐标方程;
(2)已知圆C与x轴相交于A,B两点,直线l:y=2x关于点M(0,m)(m≠0)对称的直线为l′.若直线l′上存在点P使得∠APB=90°,求实数m的最大值.
【答案】(1) x2+y2-4x=0. (2) -2.
【解析】
(1)由ρ=4cosθ得ρ2=4ρcosθ,利用互化公式可得圆C的普通方程与标准方程.
(2)l′的方程为y=2x+2m,而AB为圆C的直径,故直线l′上存在点P使得∠APB=90°的充要条件是直线l′与圆C有公共点,根据点到直线的距离公式即可得出.
(1)由ρ=4cos θ得ρ2=4ρcos θ,
即x2+y2-4x=0,
故圆C的直角坐标方程为x2+y2-4x=0.
(2)l:y=2x关于点M(0,m)对称的直线l′的方程为y=2x+2m,而AB为圆C的直径,故直线l′上存在点P使得∠APB=90°的充要条件是直线l′与圆C有公共点,
故≤2,解得-2-≤m≤-2,于是,实数m的最大值为-2.
科目:高中数学 来源: 题型:
【题目】下列命题中不正确的是( )
A. 平面∥平面,一条直线平行于平面,则一定平行于平面
B. 平面∥平面,则内的任意一条直线都平行于平面
C. 一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行
D. 分别在两个平行平面内的两条直线只能是平行直线或异面直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx(a>0),e为自然对数的底数.
(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);
(Ⅲ)在区间(1,e)上>1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 , 是两个非零向量,则下列哪个描述是正确的( )
A.若|+|=||﹣||,则⊥
B.若⊥ , 则|+|=||﹣||
C.若|+|=||﹣||,则存在实数λ使得=
D.若存在实数λ使得= , 则|+|=||﹣||
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求x+2y的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com