精英家教网 > 高中数学 > 题目详情
1.如图,圆柱的高为2,底面半径为3,AE,DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:BC⊥BE;
(2)求几何体AEB-DFC的体积;
(3)求平面DFC与平面ABF所成的锐二面角的余弦值.

分析 (1)根据AE⊥底面BEFC,可得AE⊥BC,而AB⊥BC,又AE∩AB=A满足线面垂直的判定定理所需条件,则BC⊥面ABE,根据线面垂直的性质可知BC⊥BE;.
(2)根据题意可知四边形EFBC为矩形则BF为圆柱下底面的直径,设正方形ABCD的边长为x,建立方程,解之即可求出经,由此能求出几何体AEB-DFC的体积.
(3)以F为原点建立空间直角坐标系,利用向量法能求出平面DFC与平面ABF所成的锐二面角的余弦值.

解答 证明:(1)∵AE是圆柱的母线,∴AE⊥底面BEFC,
∵BC?面BEFC,∴AE⊥BC,
∵ABCD是正方形,∴AB⊥BC,
又AE∩AB=A,∴BC⊥面ABE,
又BE?面AB,∴BC⊥BE.
(2)∵四边形AEFD为矩形,且ABCD是正方,∴EF$\underset{∥}{=}$BC,
∵BC⊥BE,∴四边形EFBC为矩形,
∴BF为圆柱下底面的直径,
设正方形ABCD的边长为x,则AD=EF=AB=x,
在直角△AEB中,AE=2,AB=x,且BE2+AE2=AB2,得BE2=x2-4,
在直角△BEF中,BF=6,EF=x,且BE2+EF2=BF2,得BE2=36-x2
解得x=2$\sqrt{5}$,即正方形ABCD的边长为2$\sqrt{5}$,
∴何体AEB-DFC的体积V=S△AEB•EF=$\frac{1}{2}×AE×BE×EF$=$\frac{1}{2}×2×\sqrt{(2\sqrt{5})^{2}-{2}^{2}}×2\sqrt{5}$=8$\sqrt{5}$.
(3)如图以F为原点建立空间直角坐标系,
则A(2$\sqrt{5}$,0,2),B(2$\sqrt{5}$,4,0),F(0,0,0),C(0,4,0),D(0,0,2),
$\overrightarrow{FA}$=(2$\sqrt{5}$,0,2),$\overrightarrow{FB}$=(2$\sqrt{5}$,4,0),$\overrightarrow{FC}$=(0,4,0),$\overrightarrow{FD}$=(0,0,2),
设平面ABF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FA}=2\sqrt{5}x+2z=0}\\{\overrightarrow{n}•\overrightarrow{FB}=2\sqrt{5}x+4y=0}\end{array}\right.$,取x=$\sqrt{5}$,得$\overrightarrow{n}$=($\sqrt{5}$,-$\frac{5}{2}$,-5),
设平面CDF的法向量$\overrightarrow{m}$=(1,0,0),
设平面DFC与平面ABF所成的锐二面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{5}}{\sqrt{\frac{145}{4}}}$=$\frac{2\sqrt{29}}{29}$.
∴平面DFC与平面ABF所成的锐二面角的余弦值为$\frac{2\sqrt{29}}{29}$.

点评 本题主要考查了线线位置关系,线面所成角的度量,以及利用空间向量的方法求解立体几何问题,属于中档题,考查空间想象能力,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)为R上的奇函数;
③已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
其中正确的命题是①②③..(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)是R上的减函数,若f(m-1)>f(2m-1),则实数m的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是(  )
A.等腰直角三角形B.等边三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}|{{{log}_2}x}|,0<x≤2\\ \frac{1}{3}{x^2}-\frac{8}{3}x+5,x>2\end{array}$,若a,b,c,d互不相同,且f(a)=f(b)=f(c)=f(d),则a+b+c+d的取值范围为$({10,\frac{21}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2lnx-x2+ax,a∈R.
(1)若函数f(x)-ax+m=0在[$\frac{1}{e}$,e]上有两个不等的实数根,求实数m的取值范围;
(2)若函数f(x)的图象与x轴交于不同的点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(px1+qx2)<0 (实数p,q满足0<p≤q,p+q=1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b为正常数,x,y为正实数,且$\frac{a}{x}+\frac{b}{y}=2$,求x+y的最小值$\frac{a+b}{2}$+$\sqrt{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{39}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题:
①“若a2<b2,则a<b”的否命题;
②“全等三角形面积相等”的逆命题;
③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;
④“若$\sqrt{3}$x(x≠0)为有理数,则x为无理数”的逆否命题.
其中正确的命题是(  )
A.③④B.①③C.①②D.②④

查看答案和解析>>

同步练习册答案