【题目】已知抛物线C: ,过点的动直线l与C相交于两点,抛物线C在点A和点B处的切线相交于点Q.
(Ⅰ)写出抛物线的焦点坐标和准线方程;
(Ⅱ)求证:点Q在直线上;
科目:高中数学 来源: 题型:
【题目】若对任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a为常数),则a的取值范围是( )
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f(x)可以是( )
A.f(x)=4x﹣1
B.f(x)=(x﹣1)2
C.f(x)=ex﹣1
D.f(x)=ln(x﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,经过点 且斜率为k的直线l与椭圆 有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量 与 共线?如果存在,求k值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)请根据对数函数来指出函数的基本性质(结论不要求证明),并画出图像;
(2)拉普拉斯称赞对数是一项“使天文学家寿命倍増”的发明.对数可以将大数之间的乘除运算简化为加减运算,请证明: ;
(3)2017年5月23日至27日,围棋世界冠军柯洁与DeepMind公司开发的程序“AlphaGo”进行三局人机对弈,以复杂的围棋来测试人工智能.围棋复杂度的上限约为,而根据有关资料,可观测宇宙中普通物质的原子总数约为.甲、乙两个同学都估算了的近似值,甲认为是,乙认为是.现有两种定义:
①若实数满足,则称比接近;
②若实数,且,满足,则称比接近;请你任选取其中一种定义来判断哪个同学的近似值更接近,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F(x)=f(x)+f(﹣x)在区间 是单调递减函数,将F(x)的图象按向量 平移后得到函数G(x)的图象,则G(x)的一个单调递增区间是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com