分析 设P($\frac{10}{3}$,m),Q(x,y),求出AP,BP,AQ,BQ的斜率,根据A,P,Q三点共线得出m关于x,y的关系,根据垂直关系列方程化简得出答案.
解答 解:设P($\frac{10}{3}$,m),Q(x,y),
则kBP=$\frac{m}{\frac{10}{3}-2}$=$\frac{3m}{4}$,kBQ=$\frac{y}{x-2}$,
∵BP⊥BQ,
∴$\frac{3m}{4}•\frac{y}{x-2}$=-1,即4x+3my-8=0,
∵A,P,Q三点共线,
∴$\frac{m}{\frac{10}{3}+2}=\frac{y}{x+2}$,∴m=$\frac{16y}{3(x+2)}$,
代入4x+3my-8=0得$\frac{{x}^{2}}{4}+{y}^{2}=1$.
故答案为:$\frac{x^2}{4}+{y^2}=1$.
点评 本题考查了轨迹方程的求解,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{3}-1$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “x2+x-2>0”是“x>1”的充分不必要条件 | |
B. | 命题“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0” | |
C. | “若am2<bm2,则a<b”的逆否命题为真命题 | |
D. | 命题“若$x=\frac{π}{4},则tanx=1$”的逆命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
高中以下 | 高中以上 | 合计 | |
支持 | 22 | 68 | 90 |
不支持 | 8 | 2 | 10 |
合计 | 30 | 70 | 100 |
P(K2≤k) | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com