设曲线y=x2+x+1-ln x在x=1处的切线为l,数列{an}中,a1=1,且点(an,an+1)在切线l上.
(1)求证:数列{1+an}是等比数列,并求an;
(2)求数列{an}的前n项和Sn.
科目:高中数学 来源:2011届高考数学第一轮复习测试题7 题型:044
设曲线y=x2+x+2-lnx在x=1处的切线为l,数列{an}的首项a1=-m,(其中常数m为正奇数)且对任意n∈N+,点(n-1,an+1-an-a1)均在直线l上.
(1)求出{an}的通项公式;
(2)令bn=nan(n∈N+),当an≥a5恒成立时,求出n的取值范围,使得bn+1>bn成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数.
(Ⅰ)用表示xn+1;
(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(nN *),其中x1为正实数.
(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,记a4 =lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com