精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线的参数方程为:为参数,在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为:,直线与曲线交于AB两点,

求曲线的普通方程及的最小值;

若点,求的最大值.

【答案】(1)曲线的普通方程为的最小值为.(2)最大值70

【解析】

由曲线的极坐标方程,能求出曲线的普通方程最小时,圆心距最大为,能求出的最小值;将直线方程联立方程,得,从而,进而,由此能求出的最大值.

曲线的极坐标方程为:

曲线的普通方程为,即

直线的参数方程为:为参数

直线与曲线交于AB两点,

最小时,圆心距最大为

的最小值为:

设直线上点AB对应参数方程为参数的参数分别为

将直线方程联立方程,得:

时,取最大值70.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用.房间定价多少时,宾馆利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设四边形为矩形,点为平面外一点,且平面,若.

1)求与平面所成角的大小;

2)在边上是否存在一点,使得点到平面的距离为,若存在,求出的值,若不存在,请说明理由;

3)若点的中点,在内确定一点,使的值最小,并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点在轴上,且短轴的两个顶点与其中一个焦点的连线构成斜边为的等腰直角三角形.

(1)求椭圆的方程;

(2)动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以线段为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四边形为某椭圆的内接矩形的充要条件是:它的四个顶点是椭圆的同心圆与它的四个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某年数学竞赛请自以为来自X星球的选手参加填空题比赛,共10道题目,这位选手做题有一个古怪的习惯:先从最后一题(第10题)开始往前看,凡是遇到会的题就作答,遇到不会的题目先跳过(允许跳过所有的题目),一直看到第1题;然后从第1题开始往后看,凡是遇到先前未答的题目就随便写个答案,遇到先前已答的题目则跳过(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答题),这样所有的题目均有作答,设这位选手可能的答题次序有n种,则n的值为(

A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设锐角的外接圆的半径为,在内取外接圆的同心圆,其半径为 ,从圆上任取一点,作于点于点于点

(1)求证:的面积为定值;

(2)猜想:当为任意三角形、同心圆为任意同心圆时,结论是否成立(不要求证明)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案