精英家教网 > 高中数学 > 题目详情
(理科)已知点O是△ABC的重心,内角A、B、C所对的边长分别为a、b、c,且2a
OA
+b•
OB
+
2
3
3
c•
OC
=
0
,则角C的大小是
 
考点:平面向量数量积的运算
专题:计算题,解三角形,平面向量及应用
分析:根据点O是△ABC的重心,得出
OA
+
OB
+
OC
=
0
,再根据2a
OA
+b•
OB
+
2
3
3
c•
OC
=
0
,得出a、b、c的关系,利用余弦定理求出角C的大小.
解答: 解:∵点O是△ABC的重心,
OA
+
OB
+
OC
=
0

又∵2a
OA
+b•
OB
+
2
3
3
c•
OC
=
0

∴可设2a=x,b=x,
2
3
3
c=x(x>0),
∴a=
x
2
,b=x,c=
3
2
x(x>0),
∴cosC=
a2+b2-c2
2ab
=
x2
4
+x2-
3x2
4
2•
x
2
•x
=
1
2

又∵C∈(0,π),∴C=
π
3

∴角C的大小是
π
3

故答案为:
π
3
点评:本题考查了平面向量的应用问题,也考查了解三角形的应用问题,解题时应利用三角形的重心定理,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对任意x∈[0,5],不等式1+
m
4
x≤
2
4+x
≤1+
n
5
x恒成立,则一定有(  )
A、m≤
1
2
,n≥-
1
3
B、m≤-
1
2
,n≥-
1
3
C、m≤-
1
2
,n≥
1
3
D、m<-
1
2
,n>-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(x,
3-(x-2)2
),设
a
b
的夹角为θ,则cosθ的值域为(  )
A、[
1
2
,1]
B、[0,
1
2
]
C、[0,
3
2
]
D、[
3
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
x
-x3的单调区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对任意x∈[1,2],x2-a≥0,命题q:存在x∈R,x2+2ax+2-a=0,若命题p且q是真命题,则实数a的取值范围为(  )
A、a≤-2或1≤a≤2
B、a≤-2或a=1
C、a≥1
D、-2≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
AC
=2
3
,∠BAC=30°,则|
AB
|+|
AC
|
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,以原点为极点,x轴为非负半轴为极轴建立极坐标系,已知圆C与直线l的方程分别为:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t为参数).若圆C被直线l平分,则x0的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{xn}满足x1>0,xn+1=
3(1+xn)
3+xn
,n=1,2,3…那么(  )
A、数列{xn}是单调递增数列
B、数列{xn}是单调递减数列
C、数列{xn}或是单调递增数列,或是单调递减数列
D、数列{xn}既非单调递增数列,也非单调递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax•g(x),(a>0,且a≠1),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有穷数列{
f(n)
g(n)
}(n=1,2,…10)中,任意取正整数k(1≤k≤10),则前k项和大于
15
16
地概率是(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

同步练习册答案