精英家教网 > 高中数学 > 题目详情

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

【答案】(1)的单调增区间为,单调减区间为;(2)实数的取值范围为.

【解析】

试题分析:(1)首先确定函数的定义域,进一步对求导,利用导函数与原函数的关系,得到原函数的单调区间;(2)“存在,对任意的,总有成立”等价于“上的最大值不小于上的最大值”进一步,分别求函数在区间上的最大值.

试题解析:(1) ,(此处若不写定义域,可适当扣分)

时,;当时,

的单调增区间为,单调减区间为

(2),则,

,故在,即函数上单调递增,

而“存在,对任意的,总有成立”等价于“上的最大值不小于上的最大值”

上的最大值为中的最大者,记为

所以有,,

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某造船公司年造船量是20已知造船x艘的产值函数为R(x)3 700x45x210x3(单位:万元)成本函数为C(x)460x5 000(单位:万元)

(1)求利润函数P(x)(提示:利润=产值-成本)

(2)问年造船量安排多少艘时可使公司造船的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上任一点,且点

1)若在圆上,求线段的长及直线的斜率.

2)求的最大值和最小值.

3)若,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(1)若c=2, ,且△ABC的面积 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为的直线与抛物线相交于AB两点.

(1)用p表示线段AB的长;

(2)若,求这个抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1,且,设,透光区域的面积为.

(1)求关于的函数关系式,并求出定义域;

(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点、焦点在x轴上的椭圆它的离心率为且与直线xy10相交于MN两点若以MN为直径的圆经过坐标原点求椭圆的方程.

查看答案和解析>>

同步练习册答案