精英家教网 > 高中数学 > 题目详情

【题目】已知平面向量 )满足 =2,且 的夹角为120° , t∈R,则|(1﹣t) +t |的最小值是 . 已知 =0,向量 满足( )( )=0,| |=5,| |=3,则 的最大值为

【答案】;18
【解析】解:①∵平面向量 满足| |=2,且 的夹角为120°,
故当t( )满足t| |= 时,|(1﹣t) +t |(t∈R)取最小值,
此时由向量加法的三角形法则可得|(1﹣t) + |(t∈R)的最小值是
②由 =0,建立如图所示的直角坐标系;
可设 =(m,0), =(0,n), =(x,y),
∵| |=5,
∴m2+n2=25,记此圆为⊙M;
∵向量 满足( )( )=0,
∴x2+y2﹣mx﹣ny=0,
化为 + =
说明点C在⊙M上;
∴| |=| |=3,
∴| |=| |=4,
过点C分别作CD⊥y轴,CE⊥x轴,垂足分别为D,E;
设∠CBD=θ,则∠OAC=θ,
则x=4sinθ=m﹣3cosθ,
=mx=4sinθ(4sinθ+3cosθ)
=16sin2θ+12sinθcosθ
=8(1﹣cos2θ)+6sin2θ
=10sin(2θ﹣φ)+8≤18;
的最大值为18.
所以答案是: ,18.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是否存在过点(﹣5,﹣4)的直线l,使它与两坐标轴围成的三角形的面积为5?若存在,求出直线l的方程(化成直线方程的一般式);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数),在极坐标系中,直线的方程为: ,直线的方程为

(Ⅰ)写出曲线的直角坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点, 与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且b=acosc+ csinA.
(1)求角A的大小;
(2)当a=3时,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC .点DEN分别为棱PA,PCBC的中点,M是线段AD的中点,PA=AC=4,AB=2.

(Ⅰ)求证:MN∥平面BDE

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xOy中,设椭圆E: =1(a>b>0),其中b= a,F为椭圆的右焦点,P(1,1)为椭圆E内一点,PF⊥x轴.

(1)求椭圆E的方程;
(2)过P点作斜率为k1 , k2的两条直线分别与椭圆交于点A,C和B,D.若满足|AP||PC|=|BP||DP|,问k1+k2是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(4cosα,sinα), =(sinβ,4cosβ), =(cosβ,﹣4sinβ)
(1)若 ﹣2 垂直,求tan(α+β)的值;
(2)若β∈(﹣ ],求| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,点是椭圆上在第一象限的点,直线轴于点,直线轴于点.

(Ⅰ)求椭圆的标准方程和离心率;

(Ⅱ)是否存在点,使得直线 与直线平行?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案