精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

  1. 求椭圆的方程;
  2. 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

【答案】,

【解析】(1)解:由,得,再由,得

由题意可知,

解方程组 得 a=2,b=1

所以椭圆的方程为

(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),

于是A,B两点的坐标满足方程组

由方程组消去Y并整理,得

设线段AB是中点为M,则M的坐标为

以下分两种情况:

(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是

(2)当K时,线段AB的垂直平分线方程为

令x=0,解得

整理得

综上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列四个说法:

①已知向量,若的夹角为钝角,则

②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;

③函数有三个零点;

④函数上单调递减,在上单调递增.

其中正确的是__________.(填上所有正确说法的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解重庆市高中学生在面对新高考模式“3+1+2”的科目选择中,物理与历史的二选一是否与性别有关,某高中随机对该校50名高一学生进行了问卷调查得到相关数据如下列联表:

选物理

选历史

合计

男生

5

女生

10

合计

己知在这50人中随机抽取1人,抽到选物理的人的概率为

1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为物理与历史的二选一与性别有关?

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(参考公式,其中为样本容量)

2)己知在选物理的10位女生中有3人选择了化学、地理,有5人选择了化学、生物,有2人选择了生物、地理,现从这10人中抽取3人进行更详细的学科意愿调查,记抽到的3人中选择化学的有X人,求随机变量X的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx是定义域为R的奇函数,其中m是常数.

(Ⅰ)判断fx)的单调性,并用定义证明;

(Ⅱ)若对任意x[31],有ftx+f2t1≤0恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若存在实数,使得,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某池塘中原有一块浮草,浮草蔓延后的面积(平方米)与时间(月)之间的函数关系式是,它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是平方米;②第个月浮草的面积超过平方米;③浮草每月增加的面积都相等;④若浮草面积达到平方米,平方米,平方米所经过的时间分别为,则.其中正确命题的序号有_____.(注:请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:),经统计其增长长度均在区间内,将其按分成6组,制成频率分布直方图,如图所示其中增长长度为及以上的产品为优质产品.

1)求图中的值;

2)已知这120件产品来自于,B两个试验区,部分数据如下列联表:

将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;

下面的临界值表仅供参考:

(参考公式:,其中

3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离,倾斜角为的直线经过焦点,且与抛物线交于两点.

1)求抛物线的标准方程及准线方程;

2)若为锐角,作线段的中垂线轴于点.证明:为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,则下列结论中错误的是(

A.B.平面ABCD

C.三棱锥的体积为定值D.的面积与的面积相等

查看答案和解析>>

同步练习册答案