精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(2)若 上的最小值为-2,求m的值。

【答案】12m2

【解析】试题分析:)利用条件,得到0a1fx)在R上单调递减,从而将转化为,进而得,研究二次函数得到本题结论;

2,得到二次函数h(t)t22mt2(tm)22m2 (t≥),分类讨论研究得到m=2,得到本题结论.

试题解析:

1 ,

0<a<1,

单调递减, 单调递增,f(x)R上单调递减.

不等式化为

,解得

.

,由(1)可知为增函数

h(t)t22mt2(tm)22m2 (t≥)

m≥,当tm时,h(t)min2m2=-2,∴m2

m<,当t时,h(t)min3m=-2,解得m>,舍去

综上可知m2 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂2万元设计了某款式的服装,根据经验,每生产1百套该款式服装的成本为1万元,每生产(百套)的销售额(单位:万元).

(1)若生产6百套此款服装,求该厂获得的利润;

(2)该厂至少生产多少套此款式服装才可以不亏本?

(3)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润=销售额-成本,其中成本=设计费+生产成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分. (Ⅰ)求ξ的分布列和数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)在定义域[11]上既是奇函数,又是减函数.

(1)求证:对任意x1x2[11],有[f(x1)f(x2)]·(x1x2)0

(2)f(1a)f(1a2)0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机调查某社区80个人,以研究这一社区居民的休闲方式是否与性别有关,得到下面的数据表:

休闲方式
性别

看电视

运动

合计

男性

20

10

30

女性

45

5

50

合计

65

15

80


(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人是以运动为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为休闲方式与性别有关系?

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ),其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

1证明:PE⊥BC;

2若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最小值,则函数g(x)=f( ﹣x)是(
A.偶函数且它的图象关于点(π,0)对称
B.奇函数且它的图象关于点(π,0)对称
C.奇函数且它的图象关于点( ,0)对称
D.偶函数且它的图象关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c为三个不同的实数,记集合A= ,B= ,若集合A,B中元素个数都只有一个,则b+c=(
A.1
B.0
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠ABC= ,边BC在平面α内,顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为 ,则sinθ=

查看答案和解析>>

同步练习册答案