精英家教网 > 高中数学 > 题目详情
17.已知f(x)=$\left\{\begin{array}{l}{2x+1,}&{x≤0}\\{{x}^{2}-1,}&{x>0}\end{array}\right.$,则“f[f(a)]=1“是“a=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

分析 根据充分条件和必要条件的定义,结合函数的性质进行判断即可.

解答 解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,
若x≤0,若f(x)=1,则2x+1=1,则x=0,
若x>0,若f(x)=1,则x2-1=1,则x=$\sqrt{2}$,
即若f[f(a)]=1,则f(a)=0或$\sqrt{2}$,
若a>0,则由f(a)=0或1得a2-1=0或a2-1=$\sqrt{2}$,
即a2=1或a2=$\sqrt{2}$+1,解得a=1或a=$\sqrt{1+\sqrt{2}}$,
若a≤0,则由f(a)=0或1得2a+1=0或2a+1=$\sqrt{2}$,
即a=-$\frac{1}{2}$,此时充分性不成立,
即“f[f(a)]=1“是“a=1”的必要不充分条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在区域$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$内任意取一点P(x,y),则点P到原点距离小于1的概率是(  )
A.0B.$\frac{π}{4}$-$\frac{1}{2}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)与直线y=2的相邻两个交点的距离为π,且f(x)-f(-x)=0,若g(x)=sin(ωx+φ),则(  )
A.y=g(x)在(0,$\frac{π}{2}$)上递减B.y=g(x)在(0,$\frac{π}{6}$)上递减
C.y=g(x)在(0,$\frac{π}{2}$)上递增D.y=g(x)在(0,$\frac{π}{6}$)上递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}共有2k(k≥2,k∈Z)项,a1=1,前n项和为Sn,前n项乘积为Tn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中a=2${\;}^{\frac{2}{2k-1}}$,数列{bn}满足bn=log2$\root{n}{{T}_{n}}$,
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若|b1-$\frac{3}{2}$|+|b2-$\frac{3}{2}$|+…+|b2k-1-$\frac{3}{2}$|+|b2k-$\frac{3}{2}$|≤$\frac{3}{2}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知程序框图如图所示,则该程序框图的功能是(  )
A.求数列{$\frac{1}{n}$}的前11项和(n∈N*B.求数列{$\frac{1}{2n}$}的前11项和(n∈N*
C.求数列{$\frac{1}{n}$}的前12项和(n∈N*D.求数列{$\frac{1}{2n}$的前12项和(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在Rt△BEC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA和正△CED.
(Ⅰ)求线段AD的长;
(Ⅱ)比较∠ADC和∠ABC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线3x+ay=0(a>0)被圆(x-2)2+y2=4所截得的弦长为2,则a的值为(  )
A.3$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在四棱柱ABCD一A1B1C1D1中,底面ABCD是菱形,且AB=AA1=$\sqrt{5}$,BD=4,A1在底面 ABCD的射影是AC与BD的交点O.
(1)证明:在侧棱AA1上存在-点E,使得0E⊥平面BB1D1D,并求出AE的长;
(2)求二面角A1一B1D-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{3}$且$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案