【题目】已知函数 ,且该函数的图象过点(1,5). (Ⅰ)求f(x)的解析式,并判断f(x)的奇偶性;
(Ⅱ)判断f(x)在区间(0,2)上的单调性,并用函数单调性的定义证明你的结论.
【答案】解:(Ⅰ)因为函数f(x)图象过点(1,5),即1+ =5,解得m=4.
所以 .
因为f(x)的定义域为(∞,0)∪(0,+∞),定义域关于坐标原点对称,
又 ,
所以函数f(x)是奇函数.
(II)函数f(x)在区间(0,2)上是减函数.
证明:设x1,x2∈(0,2),且x1<x2,
则
=
因为x1,x2∈(0,2),则x1x2∈(0,4),
所以 .
又因为x1<x2,所以x1x2<0,
所以 ,即f(x1)f(x2)>0.
所以f(x)在区间(0,2)上是减函数.
【解析】(Ⅰ)根据条件求出m的值,结合函数奇偶性的定义进行证明即可,(Ⅱ)根据函数单调性的定义进行证明即可.
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(2x﹣1),g(x)=ax﹣a(a∈R).
(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;
(2)已知a<1,若存在唯一的整数x0 , 使得f(x0)<g(x0),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,P,Q分别是AA1 , B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1;
(2)若AB=AA1 , BC=3,AC1=3,BC1= ,求证:平面ABC1⊥平面AA1C1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.
(1)求f( )的值;
(2)求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1内的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD的体积最大值是( )
A.36
B.12
C.24
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是( )
A.y=ax2+bx+c
B.y=aex+b
C.y=aax+b
D.y=alnx+b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sinx的图象上所有的点向右平行移动 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )
A.y=sin(2x )
B.y=sin(2x )
C.y=sin( x )
D.y=sin( x )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com