精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆与直线都经过点.直线平行,且与椭圆交于两点,直线轴分别交于两点.

(1)求椭圆的方程;

(2)证明: 为等腰三角形.

【答案】(1) ;(2)证明见解析.

【解析】试题分析:(1)将点M分别代入直线方程及椭圆方程,即可求得ab的值,求得椭圆方程;
(2)设直线m的方程,代入椭圆方程,利用韦达定理及直线的斜率公式求得kMA+kMB=0,即可求得MEF为等腰三角形.

试题解析:

(1)由直线都经过点,则a=2b,将代入椭圆方程: ,解得:b2=4,a2=16,椭圆的方程为

(2)设直线为:

联立: ,得

于是

设直线的斜率为,要证为等腰三角形,只需

所以为等腰三角形.

点睛: 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,证明三角形为等腰三角形转化为证明斜率之和为0是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆经过为坐标原点,线段的中点在圆上.

(1)求的方程;

(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为梯形,平面平面

为侧棱的中点,且.

(1)证明: 平面

(2)若点到平面的距离为,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的菱形, .已知 .

(Ⅰ)证明:

(Ⅱ)若上一点,记三棱锥的体积和四棱锥的体积分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,且椭圆的离心率为.

(1)求椭圆的方程;

(2)若为椭圆的右顶点,点是椭圆上不同的两点(均异于)且满足直线斜率之积为.试判断直线是否过定点,若是,求出定点坐标,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求曲线在点处的切线方程;

)当时,求证:函数有且仅有一个零点;

)当时,写出函数的零点的个数.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是( )

A. 使得为等腰三角形的点有且仅有4个

B. 使得为直角三角形的点有且仅有4个

C. 使得的点有且仅有4个

D. 使得的点有且仅有4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求的单调区间;

(Ⅱ)若对任意的 都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足,数列的前项和为,且满足.

(1)求数列的通项公式;

(2)数列满足,求数列的前项和.

查看答案和解析>>

同步练习册答案