【题目】已知椭圆C: 的右焦点为F(2,0),过点F的直线交椭圆于M、N两点且MN的中点坐标为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l不经过点P(0,b)且与C相交于A,B两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.
科目:高中数学 来源: 题型:
【题目】某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数为5组: , , , , ,得到如图所示的频率分布直方图:
(Ⅰ)写出的值;
(Ⅱ)求在抽取的40名学生中月上网次数不少于15次的学生人数;
(Ⅲ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人,求至少抽到1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为,过任作一条与两条坐标轴都不垂直的直线,与椭圆交于两点,且的周长为8,当直线的斜率为时, 与轴垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)在轴上是否存在定点,总能使平分?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点F与长轴垂直的直线与椭圆在第一象限相交于点M,.
(1)求椭圆C的标准方程;
(2)斜率为1的直线l与椭圆相交于B,D两点,若以线段BD为直径的圆恰好过坐标原点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的右焦点为F(2,0),过点F的直线交椭圆于M、N两点且MN的中点坐标为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l不经过点P(0,b)且与C相交于A,B两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,直线:.
(Ⅰ)设是图象上一点,为原点,直线的斜率,若 在 上存在极值,求的取值范围;
(Ⅱ)是否存在实数,使得直线是曲线的切线?若存在,求出的值;若不存在,说明理由;
(Ⅲ)试确定曲线与直线的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4— 4:坐标系与参数方程
设极坐标系与直角坐标系有相同的长度单位,原点为极点,轴正半轴为极轴,曲线的参数方程为(是参数),直线的极坐标方程为.
(Ⅰ)求曲线的普通方程和直线的参数方程;
(Ⅱ)设点,若直线与曲线相交于两点,且,求的值﹒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD是边长为的正方形,平面PAC⊥底面ABCD,PA=PC=
(1)求证:PB=PD;
(2)若点M,N分别是棱PA,PC的中点,平面DMN与棱PB的交点Q,则在线段BC上是否存在一点H,使得DQ⊥PH,若存在,求BH的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com