精英家教网 > 高中数学 > 题目详情

【题目】某名校从年到年考入清华,北大的人数可以通过以下表格反映出来。(为了方便计算,将年编号为年编为,以此类推……)

年份

人数

(1)将这年的数据分为人数不少于人和少于人两组,按分层抽样抽取年,问考入清华、北大的人数不少于20的应抽多少年?在抽取的这年里,若随机的抽取两年恰有一年考入清华、北大的人数不少于的概率是多少?;

(2)根据最近年的数据,利用最小二乘法求出与之间的线性回归方程,并用以预测年该校考入清华、北大的人数。(结果要求四舍五入至个位)

参考公式:

【答案】(1)年,

(2)之间的线性回归方程,预测年该校考入清华,北大的人数为人。

【解析】

1)先统计出人数少于20人有几年,人数不少于20人的有几年,这样按分层抽样抽取5年,这样就可以求出考入清华、北大的人数不少于5的应抽多少年,然后求出随机的抽取两年恰有一年考入清华、北大的人数不少于的概率。

(2)按照公式求出,最后求出之间的线性回归方程,当,代入线性回归方程中,就可预测年该校考入清华、北大的人数。(格外要注意结果要求四舍五入至个位)

1)在这10年里,人数不少于人有4年,少于20人的有6年,分层抽样抽取5年,所以抽取人数不少于人有2年,少于20人的有3年;随机的抽取两年恰有一年考入清华、北大的人数不少于为事件,则

2)计算出,代入所给的公式中,

之间的线性回归方程,当时,

所以之间的线性回归方程,预测年该校考入清华,北大的人数为人。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假:

1是有理数;(2

3)奇数的平方仍是奇数;(4)两个集合的交集还是一个集合;

5)每一个素数都是奇数;(6)方程有实数根;

7;(8)如果,那么

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)

性别

学生人数

抽取人数

女生

18

男生

3

1)求

2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

【答案】(I)见解析; (Ⅱ)见解析.

【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.

详解:(I)由题意得,甲公司一名推销员的日工资 (单位:) 与销售件数的关系式为: .

乙公司一名推销员的日工资 (单位: ) 与销售件数的关系式为:

()记甲公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

记乙公司一名推销员的日工资为 (单位: ),由条形图可得的分布列为

120

128

144

160

0.2

0.3

0.4

0.1

∴仅从日均收入的角度考虑,我会选择去乙公司.

点睛:求解离散型随机变量的数学期望的一般步骤为:

第一步是判断取值,即判断随机变量的所有可能取值,以及取每个值所表示的意义;

第二步是探求概率,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;

第三步是写分布列,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;

第四步是求期望值,一般利用离散型随机变量的数学期望的定义求期望的值

型】解答
束】
19

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

【答案】I;(II.

【解析】试题分析:(Ⅰ)将由代入,化简即可得到曲线的极坐标方程;(Ⅱ)将的参数方程代入,得,根据直线参数方程的几何意义,利用韦达定理结合辅助角公式,由三角函数的有界性可得结果.

试题解析:(Ⅰ)由,得,即

所以曲线的极坐标方程为

II)将的参数方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范围是.

型】解答
束】
23

【题目】已知均为正实数.

(Ⅰ)若,求证:

(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

对商品不满意

合计

(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取次交易进行问卷调查,详细了解满意与否的具体原因,并在这次交易中再随机抽取次进行电话回访,听取购物者意见.求电话回访的次交易至少有一次对商品和快递都满意的概率.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:

(I)证明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若点在棱上,满足 ,点在棱上,且的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln x+ax2-2x,aR,a≠0

(1)若函数f(x)的图象在x=1处的切线与x轴平行,f(x)的单调区间;

(2)f(x)≤axx[,+∞)上恒成立,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠ABC=60°,ACBD相交于点OAE⊥平面ABCDCFAEABAE=2.

(1)求证:BD⊥平面ACFE

(2)当直线FO与平面BED所成的角为45°时,求异面直线OFBE所成的角的余弦值大小.

查看答案和解析>>

同步练习册答案