精英家教网 > 高中数学 > 题目详情
19.(1)已知椭圆的长轴长为10,离心率为$\frac{4}{5}$,求椭圆的标准方程;
(2)求与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线的标准方程.

分析 (1)利用椭圆的长轴长为10,离心率为$\frac{4}{5}$,求出几何量,即可求椭圆的标准方程;
(2)点(3$\sqrt{2}$,2)代入$\frac{{x}^{2}}{a^2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),可得$\frac{18}{{a}^{2}}$-$\frac{4}{{b}^{2}}$=1,利用a2+b2=20,求出双曲线的标准方程.

解答 解:(1)∵椭圆的长轴长为10,离心率为$\frac{4}{5}$,
∴2a=10,$\frac{c}{a}$=$\frac{4}{5}$,
∴a=b,b=3,c=4,
∴椭圆的标准方程为$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1或$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{25}$=1;
(2)由题意双曲线的焦点坐标为(±2$\sqrt{5}$,0),c=±2$\sqrt{5}$,
∴点(3$\sqrt{2}$,2)代入$\frac{{x}^{2}}{a^2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),可得$\frac{18}{{a}^{2}}$-$\frac{4}{{b}^{2}}$=1,
∵a2+b2=20,
∴a2=12,b2=8,
∴双曲线的标准方程$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{8}$=1.

点评 本题考查椭圆、双曲线的标准方程,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列函数为奇函数的是(  )
A.f(x)=$\sqrt{1+x}+\sqrt{1-x}$B.f(x)=x3-1C.f(x)=$\sqrt{1+x}-\sqrt{1-x}$D.f(x)=-$\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在周长为6的△ABC中,∠ABC=60°,点P在边AB上,PH⊥CA于H(点H在边CA上),且PH=$\frac{\sqrt{3}}{2}$,CP=$\frac{\sqrt{7}}{2}$,则边CA的长为2.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.篮球比赛时,运动员的进攻成功率=投球命中率×不被对方运动员的拦截率.某运动员在距球篮10米(指到篮圈圆心在地面上射影的距离)以内的投球命中率有如下变化:距球篮1米以内(不含1米)为100%.距离球篮x米处,命中率下降至100%-10%[x].该运动员投球被拦截率为$\frac{90%}{[x]+1}({[x]为实数x的整数部分,如[{3.4}]=3})$.试求该运动员在比赛时:(结果精确到1%)
(1)在三分线(约距球篮6.72米)处的进攻成功率为多少?
(2)在距球篮几米处的进攻成功率最大,最大进攻成功率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)若函数h(x)=f(x+t)的图象关于点(-$\frac{π}{6}$,0)对称,且t∈(0,$\frac{π}{2}$),求t的值;
(2)若锐角△ABC中,角A满足h(A)=1,求($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知lg2=0.3010,由此可以推断22015是(  )位整数.
A.605B.606C.607D.608

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin(ωx+φ)(φ>0),(-π<ϕ<0)的一段图象如图所示,则ϕ=(  )
A.$-\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$-\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“m>-1”是“方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{1+m}$=1表示双曲线”的一个充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,现将△ABD沿BD折起后使AC=$\sqrt{3}$,在四面体ABCD四个面中两两构成直二面角的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案