分析 法一:令x=2sint,dx=2costdt,x=2时,t=$\frac{π}{2}$,x=0时,t=0,则${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx=$2{∫}_{0}^{\frac{π}{2}}2co{s}^{2}tdt$+($\frac{1}{3}$x3)${|}_{0}^{2}$,由此能求出结果.
法二:由${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$是圆x2+y2=4的面积的$\frac{1}{4}$,得${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx+{∫}_{0}^{2}{x}^{2}dx$=$\frac{1}{4}×π×4+(\frac{1}{3}{x}^{3}){|}_{0}^{2}$,由此能求出结果.
解答 解法一:令x=2sint,dx=2costdt,x=2时,t=$\frac{π}{2}$,x=0时,t=0,
则${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx
=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx+{∫}_{0}^{2}{x}^{2}dx$
=$2{∫}_{0}^{\frac{π}{2}}2co{s}^{2}tdt$+($\frac{1}{3}$x3)${|}_{0}^{2}$
=2${∫}_{0}^{\frac{π}{2}}(1-cos2t)dt$+$\frac{8}{3}$
=(2t-sin2t)${|}_{0}^{\frac{π}{2}}$+$\frac{8}{3}$
=π+$\frac{8}{3}$.
解法二:∵${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx$是圆x2+y2=4的面积的$\frac{1}{4}$,
∴${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx=${∫}_{0}^{2}\sqrt{4-{x}^{2}}dx+{∫}_{0}^{2}{x}^{2}dx$
=$\frac{1}{4}×π×4+(\frac{1}{3}{x}^{3}){|}_{0}^{2}$
=$π+\frac{8}{3}$.
故答案为:$π+\frac{8}{3}$.
点评 本题考查定积分的求不地,是中档题,解题时要认真审题,注意换元法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x12+x22+x32=14 | B. | 1+a+b=0 | C. | a2-4b=0 | D. | x1+x3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 75° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com