精英家教网 > 高中数学 > 题目详情
8.直线y-1=k(x-1)(k∈R)与x2+y2-2y=0的位置关系(  )
A.相离或相切B.相切C.相交D.相切或相交

分析 利用圆心到直线的距离与半径比较,大于半径,相离,等于,相切,小于相交.

解答 解:由题意:圆x2+y2-2y=0化为x2+(y-1)2=1,圆心为(0,1),半径是1.
由直线方程y-1=k(x-1)可知:直线过定点(1,1),
那么:圆心到定点的距离为1,说明定点在圆上;
∵k∈R,∴过定点的直线必然与圆相交.
故选:C.

点评 本题考查了直线与圆的位置关系的判断方法.利用圆心到定点距离与半径比较,第二是消元,构造二次方程,利用判别式.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列说法错误的是(  )
A.命题“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0”
B.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
C.命题“若a>b,则ac2>bc2”的否命题为真命题
D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列结论正确的是(  )
A.|a|>|b|B.$\frac{b}{a}$<1C.ab<b2D.ab>b2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义在区间[0,5π]上的函数y=2sinx的图象与y=cosx的图象的交点个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最下正周期为π,且点P($\frac{π}{6}$,2)是该函数图象的一个人最高点.
(1)求函数f(x)的解析式;
(2)若x∈[-$\frac{π}{2}$,0],求函数y=f(x)的值域;
(3)把函数y=f(x)的图线向右平移θ(0<θ<$\frac{π}{2}$)个单位,得到函数y=g(x)在[0,$\frac{π}{4}$]上是单调增函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,椭圆E的左、右焦点分别为F1,F2,过F1且斜率为$\frac{4}{3}$的直线交椭圆E于P,Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为$\frac{1}{3}$或$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知角α∈(-$\frac{π}{2}$,0),sinα=-$\frac{5}{13}$,求sin($\frac{π}{6}$+α)和cos($\frac{π}{6}$+α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若tanα=2,tanβ=3,且α,β∈(0,$\frac{π}{2}$),则α+β的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线x2=4y的准线方程是(  )
A.y=$\frac{1}{16}$B.y=-$\frac{1}{16}$C.y=xD.y=-1

查看答案和解析>>

同步练习册答案