精英家教网 > 高中数学 > 题目详情
1.已知数列{an}是等差数列,其前n项和Sn满足Sn=n2+3n+a,数列{bn}首项b1=2,且满足数列{2${\;}^{{b}_{n}}$}是公比为4的等比数列.
(1)求a的值及数列{an},{bn}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{b}_{n}}$}的前n项和为Tn,对任意的n∈N*都有λTn<1成立,求实数λ的取值范围.

分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,利用Sn=n2+3n+a,能求出数列{an}的通项公式;由数列{bn}首项b1=2,且满足数列{2${\;}^{{b}_{n}}$}是公比为4的等比数列,得${2}^{{b}_{n}}$=4n=22n,由此能求出数列{bn}的通项公式.
(2)由$\frac{1}{{a}_{n}{b}_{n}}$=$\frac{1}{2n(2n+2)}$=$\frac{1}{4}$($\frac{1}{n}-\frac{1}{n+1}$),利用裂项求和法求出数列{$\frac{1}{{a}_{n}{b}_{n}}$}的前n项和,由此利用对任意的n∈N*都有λTn<1成立,能求出实数λ的取值范围.

解答 解:(1)∵数列{an}是等差数列,其前n项和Sn满足Sn=n2+3n+a,
∴a1=S1=1+3+a=4+a,
n≥2时,an=Sn-Sn-1=(n2+3n+a)-[(n-1)2+3(n-1)+a]=2n+2,
∵数列{an}是等差数列,∴a1=2×1+2=4+a,解得a=0,
∴an=2n+2,n∈N*
∵数列{bn}首项b1=2,且满足数列{2${\;}^{{b}_{n}}$}是公比为4的等比数列,
∴${2}^{{b}_{n}}$=4n=22n
∴bn=2n.
(2)∵$\frac{1}{{a}_{n}{b}_{n}}$=$\frac{1}{2n(2n+2)}$=$\frac{1}{4}$($\frac{1}{n}-\frac{1}{n+1}$),
∴数列{$\frac{1}{{a}_{n}{b}_{n}}$}的前n项和:
Tn=$\frac{1}{4}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$=$\frac{1}{4}$(1-$\frac{1}{n+1}$),
∵对任意的n∈N*都有λTn<1成立,
∴λTn=$\frac{λ}{4}$(1-$\frac{1}{n+1}$)<1成立,
∴$\frac{λ}{4}≤1$,解得λ≤4,
∴实数λ的取值范围是(-∞,4].

点评 本题考查数列的通项公式及实数的取值范围的求法,是基础题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设x,y满足约束条件$\left\{\begin{array}{l}y-x≤1\\ x+y≤3\\ y≥m\end{array}\right.$,若z=x+3y的最大值与最小值的差为7,则实数m=(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足an=3n-2,f(n)=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,g(n)=f(n2)-f(n-1),n∈N*
(1)求证:g(2)>$\frac{1}{3}$;
(2)求证:当n≥3时,g(n)>$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于曲线C:f(x,y)=0,若存在非负实常数M和m,使得曲线C上任意一点P(x,y)有m≤|OP|≤M成立(其中O为坐标原点),则称曲线C为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界M0成为曲线C的外确界,最大的内界m0成为曲线C的内确界.
(1)曲线y2=4x与曲线(x-1)2+y2=4是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;
(2)已知曲线C上任意一点P(x,y)到定点F1(-1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=-2lnx+2mx2+(8-m)x,m∈R.
(1)若y=f(x)在x=2处有极值,求m的值;
(2)求y=f(x)在[m2,m]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(2x+φ)(0<φ<π),若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后所得图象对应的函数为偶函数,则实数φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x-(x+1)ln(x+1),(x>-1).
(Ⅰ)求曲线y=f(x)在x=e-1处的切线方程;
(Ⅱ)设函数F(x)=1-mx-$\frac{1+f(x-1)}{x}$,G(x)=(1-m)x-$\frac{m}{2x}$-2m,对任意x∈[$\frac{1}{e}$,1],是否存在m∈($\frac{1}{2}$,1),使得F(x)>G(x)+1成立?若存在,求m的取值范围;若不存在,请说明理由;
(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱锥P-ABC中,PA⊥平面ABC且PA=2,△ABC是边长为$\sqrt{3}$的等边三角形,则该三棱锥外接球的表面积为(  )
A.$\frac{4π}{3}$B.C.D.20π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于直线a,b有下列四个命题:
①过直线a有且只有一个平面β.使b∥β;
②过直线a有且只有一平面β.使b⊥β;
③在空间存在平面β,使得a∥β,b∥β;
④在空间不存在平面β,使a⊥β,b⊥β.
其中,正确的命题的序号是③(把所有正确序号都填上).

查看答案和解析>>

同步练习册答案