精英家教网 > 高中数学 > 题目详情
5.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf(x)<0的解集为(-1,0)∪(1,3).

分析 根据函数图象以及不等式的等价关系即可.

解答 解:不等式xf(x)<0等价为$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
则1<x<3,或-1<x<0,
故不等式xf(x)<0的解集是(-1,0)∪(1,3).
故答案为:(-1,0)∪(1,3).

点评 本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.直线l:x-2y+5=0与圆C:x2+y2=9相交于A、B两点,点D为圆C上异于A、B的一点,则△ABD面积的最大值为6+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从5个学生中(三男两女)任取两人参加某活动
(1)选出一男一女的概率为多少.
(2)有女生被选中的概率为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知以M为圆心的圆M:x2+y2-4x+3=0,直线l:x+y-4=0,点A在圆上,点B在直线l上,则|AB|的最小值=$\sqrt{2}-1$,tan∠MBA的最大值=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,
(1)画出不等式组所表示的平面区域,并求出该区域的面积;
(2)求目标函数z=x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(x,-6),若$\overrightarrow a$⊥$\overrightarrow b$,则|$\overrightarrow a$+$\overrightarrow b$|=(  )
A.5B.$5\sqrt{2}$C.6D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设命题p:x1和x2是方程x2-ax-2=0的两个根,不等式|m-4|≤|x1-x2|对任意实数a∈[1,2]恒成立;命题Q:函数f(x)=3x2+2mx+m+$\frac{4}{3}$有两个不同的零点.求使“P且Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:
①f(x)=x2;   ②f(x)=2x;    ③f(x)=$\sqrt{x}$;    ④f(x)=lnx.
则其中是“保等比数列函数”的f(x)的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我们称函数f(x)=$\frac{|x|}{|x|-1}$为“囧函数”,下列是关于“囧函数”的四个命题:
①?x∈(1,+∞),f(x)>1;
②?x1,x2∈(1,+∞),$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥0;
③命题p:函数f(x)=$\frac{|x|}{|x|-1}$的图象为轴对称图形,命题q:函数f(x)=$\frac{|x|}{|x|-1}$的图象存在对称中心;则(¬p)∨q为真命题;
④已知0<m<1,若“?x1∈(1,+∞),?x2∈(m,1),使得f(x1)=-f(x2)”为真命题,则m的最大值为$\frac{1}{2}$.
其中的真命题有①④.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案