【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.
(1)求函数f(x)的解析式;
(2)令g(x)=(2﹣2m)x﹣f(x);
①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;
②求函数g(x)在x∈[0,2]的最小值.
【答案】
(1)解:设f(x)=ax2+bx+c,
∵f(2)=15,f(x+1)﹣f(x)=﹣2x+1,
∴4a+2b+c=15;a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=﹣2x+1;
∴2a=﹣2,a+b=1,4a+2b+c=15,解得a=﹣1,b=2,c=15,
∴函数f(x)的表达式为f(x)=﹣x2+2x+15
(2)解:∵g(x)=(2﹣2m)x﹣f(x)=x2﹣2mx﹣15的图象是开口朝上,且以x=m为对称轴的抛物线,
①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;
②当m≤0时,g(x)在[0,2]上为增函数,当x=0时,函数g(x)取最小值﹣15;
当0<m<2时,g(x)在[0,m]上为减函数,在[m,2]上为增函数,当x=m时,函数g(x)取最小值﹣m2﹣15;
当m≥2时,g(x)在[0,2]上为减函数,当x=2时,函数g(x)取最小值﹣4m﹣11;
∴函数g(x)在x∈[0,2]的最小值为
【解析】(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;②分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案.
【考点精析】通过灵活运用二次函数的性质,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知y=f(x)(x∈R)是偶函数,当x≥0时,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2时都成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来我国电子商务行业迎来发展的新机遇,2016年双11期间,某购物平台的销售业
绩高达1207亿人民币。与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量:
①求对商品和服务全好评的次数的分布列;
②求的数学期望和方差.
(,其中)
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 140 | ||
对商品不满意 | 10 | ||
合计 | 200 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1.
(1)求两条异面直线AC1与D1E所成角的余弦值;
(2)求直线AC1与平面BED1F所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,将曲线 (α为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线C1 . 以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线C2的方程为ρ=4sinθ,求C1和C2公共弦的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.若x在 内,则sinx>cosx
B.函数 的图象的一条对称轴是
C.函数 的最大值为π
D.函数y=sin2x的图象可以由函数 的图象向右平移 个单位而得
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>0,b>0)的离心率为 ,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN||BM|为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com