精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数有两个零点,求实数的取值范围;

(2)若函数有两个极值点,试判断函数的零点个数.

【答案】(1)(2)3

【解析】试题分析:(1)第(1)问先把问题转化成的图象与的图象有两个交点,再利用导数求出 的单调性,通过图像分析得到a的取值范围.(2)第(2)问,先通过函数有两个极值点分析出函数g(x)的单调性,再通过图像研究得到它的零点个数.

试题解析:(1)令,由题意知的图象与的图象有两个交点.

.

时,,∴上单调递增;

时,,∴上单调递减.

.

又∵时,,∴时,.

又∵时,.

综上可知,当且仅当时,的图象有两个交点,即函数有两个零点.

(2)因为函数有两个极值点,

,得有两个不同的根(设).

由(1)知,,且

且函数上单调递减,在上单调递增,

.

所以函数上单调递增,

.又

所以函数恰有三个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法:

①集合{x∈N|x3=x}用列举法表示为{-1,0,1};

②实数集可以表示为{x|x为所有实数}或{R};

③方程组的解集为{x=1,y=2}.

其中正确的有(  )

A.3个B.2个

C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

2

0

0

(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;

(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水量不超过4吨时,每吨为2元;当用水量超4吨时,超过部分每吨为3元.八月甲、乙两用户共交水费元,已知甲、乙两用户月用水量分别为吨、吨.

(1)求关于的函数;

(2)若甲、乙两用户八月共交34元,分别求甲、乙两用户八月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是(

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率分别为左、右焦点,过的直线交椭圆两点,且的周长为8.

(1)求椭圆的方程;

(2)设过点的直线交椭圆于不同两点.为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩与物理成绩如下表:

数据表明之间有较强的线性关系.

(1)求关于的线性回归方程;

(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;

(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?

参考数据:回归直线的系数.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位计划建造一间背面靠墙的小屋,其地面面积为12m2,墙面的高度为3m,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为m,房屋背面和地面的费用不计.

1)用含的表达式表示出房屋的总造价;

2)当为多少时,总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= (a∈R),f(x)=ln(x+1)+g(x).

(1)若函数g(x)过点(1,1),求函数f(x)的图象在x=0处的切线方程;

(2)判断函数f(x)的单调性.

查看答案和解析>>

同步练习册答案