精英家教网 > 高中数学 > 题目详情
已知三个数1,m,4成等比数列,则圆锥曲线x2+
y2
m
=1的离心率为 (  )
A、
2
2
3
B、
2
2
C、
3
D、
3
2
3
考点:等比数列,椭圆的简单性质,双曲线的简单性质
专题:计算题,等差数列与等比数列,圆锥曲线的定义、性质与方程
分析:运用等比数列的性质可得m,再讨论m=2,m=-2,求出曲线的a,c,由离心率公式计算即可得到.
解答: 解:三个数1,m,4成等比数列,
则m2=4,解得,m=±2,
当m=2时,曲线x2+
y2
2
=1为椭圆,
则e=
c
a
=
2-1
2
=
2
2

当m=-2时,曲线为x2-
y2
2
=1为双曲线,
则离心率e=
1+2
1
=
3

故选A.
点评:本题考查离心率的求法,考查椭圆和双曲线的方程和性质,考查等比数列的性质,属于基础题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在Rt△ABC(C为直角)中,D为BC边上的一个三等分点(靠近点C),则tan∠BAD的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x
 
1+
2
x
 
-
1
2
,[x]表示不超过x的最大整数,则函数y=[f(x))]的值域集合
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:
①按“单打、双打、单打”顺序进行三盘比赛;
②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为
3
7
4
7

(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?
(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率发布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数a,b,c满足a+2b+3c=6,求证:
a+1
+
2b+2
+
3c+3
≤6.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局比赛中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.现知前2局中,甲、乙各胜1局,设ξ表示从第3局开始到比赛结束所进行的局数,则ξ的数学期望为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

边长为2的正三角形的顶点和各边的中点共6个点,从中任选两点,所选出的两点之间距离大于1的概率是(  )
A、
1
3
B、
1
2
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,
3+i
1-i
=a+bi(i为虚数单位),则a+b=(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与抛物线y2=4x交于A、B两点,与准线交于C点,与x轴交于D(3,0)点,B在线段AC上,若|BC|:|AD|=1:3,求直线l的方程.

查看答案和解析>>

同步练习册答案