【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第行的数字之和为______;去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,则此数列的前46项和为______.
【答案】 2037
【解析】
由次二项式系数对应杨辉三角形的第行,从而求系数和即可得第一个空, 若去除所有为1的项,则剩下的每一行的个数为1,2,3,4,…,可以看成构成一个首项为1,公差为1的等差数列,进而找到第46项所在的位置,利用每一行的和为等比数列的基础上减去等差数列的和,即可得解.
次二项式系数对应杨辉三角形的第行,例如:,系数分别为1,2,1,对应杨辉三角形的第三行:
令,就可以求出该行的系数和,第1行为,第2行为,第3行为,依此类推即每一行数字和为首项为1,公比为2的等比数列,即杨辉三角第行的数字之和为,
杨辉三角的前行的所有项的和为.
若去除所有为1的项,则剩下的每一行的个数为1,2,3,4,…,可以看成构成一个首项为1,公差为1的等差数列,则,且,可得当即第11行,再加上第12行的前1个数(去除两边的1),所有项的个数和为46,则杨辉三角形的前11行所有项的和为.
则此数列前46项的和为.
故答案为:,2037.
科目:高中数学 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.
(1)求这种“笼具”的体积(结果精确到0.1);
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在下列命题中,正确的命题有________(填写正确的序号)
①若,则的最小值是6;
②如果不等式的解集是,那么恒成立;
③设x,,且,则的最小值是;
④对于任意,恒成立,则t的取值范围是;
⑤“”是“复数()是纯虚数”的必要非充分条件;
⑥若,,,则必有;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,底面,,,且,. 点E在棱AB上,平面与棱相交于点F.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)写出三棱锥体积的取值范围. (结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右顶点为,,上、下顶点为,,记四边形的内切圆为.
(1)求圆的标准方程;
(2)已知圆的一条不与坐标轴平行的切线交椭圆于P,M两点.
(i)求证:;
(ii)试探究是否为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布,现从甲校100分以上(含100分)的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,…,200)统计如下:
试卷编号 | ||||||||||
试卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
试卷编号 | ||||||||||
试卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
注:表中试卷编
(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com