精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-a是奇函数
(1)求实数a的值;
(2)判断函数在R上的单调性并用函数单调性的定义证明;
(3)对任意的实数x,不等式f(x)<m-1恒成立,求实数m的取值范围.

分析 (1)由奇函数定义知,有f(-x)=-f(x)恒成立,由此可求a值;
(2)设x1、x2∈R且x1<x2,通过作差判断f(x2)与f(x1)的大小,利用函数单调性的定义可作出判断;
(3)对任意的实数x,不等式f(x)>2m-1恒成立,等价于m-1>f(x)max,根据基本函数的值域可求出f(x)max

解答 解:(1)由f(x)是奇函数,有f(-x)=-f(x),
∴$\frac{{3}^{-x}}{{3}^{-x}+1}$-a=-($\frac{{3}^{x}}{{3}^{x}+1}$-a),
∴2a=1,∴a=$\frac{1}{2}$;
(2)f(x)=$\frac{1}{2}$-$\frac{1}{{3}^{x}+1}$,f(x)在R上是增函数,
下证:设x1、x2∈R且x1<x2,且x1、x2是任意的,
f(x1)-f(x2
=($\frac{1}{2}$-$\frac{1}{{3}^{{x}_{1}}+1}$)-($\frac{1}{2}$-$\frac{1}{{3}^{{x}_{2}}+1}$)
=$\frac{{3}^{{x}_{1}}{-3}^{{x}_{2}}}{(1{+3}^{{x}_{1}})(1{+3}^{{x}_{2}})}$,
∵x1<x2,∴${3}^{{x}_{1}}$<${3}^{{x}_{2}}$,
∴$\frac{{3}^{{x}_{1}}{-3}^{{x}_{2}}}{(1{+3}^{{x}_{1}})(1{+3}^{{x}_{2}})}$<0,
即f(x1)<f(x2),
∴f(x)在R上是增函数.
(3)对任意的实数x,不等式f(x)<m-1恒成立,
则只需m-1>f(x)max
∵3x+1>1,∴0<$\frac{1}{{3}^{x}+1}$<1,
∴-1<$\frac{-1}{{3}^{x}+1}$<0,
-$\frac{1}{2}$<$\frac{1}{2}$-$\frac{1}{{3}^{x}+1}$<$\frac{1}{2}$,即-$\frac{1}{2}$<f(x)<$\frac{1}{2}$,
∴m-1≥$\frac{1}{2}$,∴m≥$\frac{3}{2}$,
即m的取值范围为:[$\frac{3}{2}$,+∞).

点评 本题考查函数的奇偶性、单调性以及不等式恒成立问题,对于函数奇偶性、单调性常用定义解决,而恒成立则往往转化为函数最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是两个相互垂直的单位向量,且$\overrightarrow a=-2\overrightarrow{e_1}-\overrightarrow{e_2}$,$\overrightarrow b=\overrightarrow{e_1}-λ\overrightarrow{e_2}$.
(Ⅰ)若$\overrightarrow a∥\overrightarrow b$,求λ的值;
(Ⅱ)若$\overrightarrow a⊥\overrightarrow b$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=log3(x2-2x)<0的单调递减区间是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知cosα,sinα是函数f(x)=x2-tx+t(t∈R)的两个零点,则sin2α=(  )
A.2-2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{2}$-1D.1-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x>0}\\{{2}^{-x}-1,x≤0}\end{array}\right.$,则f[f(-2)]=2;若f(x0)<3,则x0的取值范围是(-2,7).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ax-1+4(其中a>0且a≠1)的图象恒过定点P,则P点坐标是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P,Q是两个非空集合,定义集合间的一种运算“?”:P?Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|0≤x≤2},Q={x|x>1},则P?Q=(  )
A.[0,1)∪(2,+∞)B.[0,1]∪(2,+∞)C.[1,2]D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,则f(f(3))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等比数列{an}的公比为q,前n项和为Sn,则“|q|=1”是“S6=3S2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案