ÒÑ֪˫ÇúÏßµÄÖÐÐÄÔÚÔ­µãO£¬ÆäÖÐÒ»Ìõ×¼Ïß·½³ÌΪx=
3
2
£¬ÇÒÓëÍÖÔ²
x2
25
+
y2
13
=1
Óй²Í¬µÄ½¹µã£®
£¨1£©Çó´ËË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©ÉèÖ±ÏßL£ºy=kx+3ÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃÒÔÏÒABΪֱ¾¶µÄÔ²¹ýµãO£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨ÖصãÖÐѧѧÉú×ö£©ÉèÖ±ÏßL£ºy=kx+3ÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬CÊÇÖ±ÏßL1£ºy=mx+6ÉÏÈÎÒ»µã£¨A¡¢B¡¢CÈýµã²»¹²Ïߣ©ÊÔÎÊ£ºÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃ¡÷ABCÊÇÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³ökµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓÉÒÑÖªµÃ£ºc2=12£¬
a2
c
=
3
2
£¬Ôòa2=3£¬b2=9£¬
Òò´ËËùÇóË«ÇúÏߵıê×¼·½³ÌΪ
x2
3
-
y2
9
=1
£®---£¨4·Ö£©
£¨2£©£¨ÆÕͨÖÐѧѧÉú×ö£©
½«y=kx+3´úÈë
x2
3
-
y2
9
=1
µÃ£¨3-k2£©x2-6kx-18=0£¬
ÔòÓÉ3-k2¡Ù0£¬¡÷=216-36k2£¾0µÃ£º-
6
£¼k£¼
6
£¬k¡Ù¡À
3
£¬---£¨7·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
ÓÉÌâÒâÖª£ºOA¡ÍOB£¬Ôòx1x2+y1y2=0£¬---£¨9·Ö£©
ÓÖy1=kx1+3£¬y2=kx2+3£¬
Ôòx1x2+y1y2=(1+k2)x1x2+3k(x1+x2)+9=
9k2-9
k2-3
=0
£¬¼´k=¡À1Âú×ãÌõ¼þ£®---£¨12·Ö£©
£¨ÖصãÖÐѧѧÉú×ö£©
½«y=kx+3´úÈë
x2
3
-
y2
9
=1
µÃ£¨3-k2£©x2-6kx-18=0£¬
ÔòÓÉ3-k2¡Ù0£¬¡÷=216-36k2£¾0µÃ£º-
6
£¼k£¼
6
£¬k¡Ù¡À
3
£¬---£¨7·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù£¬
ÓÉÌâÒâÖª£ºA¡¢BÁ½µã¹ØÓÚÖ±ÏßL1¶Ô³Æ£¬---£¨9·Ö£©
ÔòABµÄÖеãDµÄ×ø±êΪ(
3k
3-k2
£¬
9
3-k2
)
£¬
²¢Âú×ãÖ±ÏßL1µÄ·½³Ìy=-
1
k
x+6
£¬Ôòk=¡À1Âú×ãÌõ¼þ£®---£¨12·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Ö±Ïßl£ºy=ax+1ÓëË«ÇúÏß3x2-y2=1ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬
£¨1£©ÇóaµÄÈ¡Öµ·¶Î§£»
£¨2£©Éè½»µãΪA£¬B£¬ÊÇ·ñ´æÔÚÖ±ÏßlʹÒÔABΪֱ¾¶µÄԲǡ¹ýÔ­µã£¬Èô´æÔÚ¾ÍÇó³öÖ±ÏßlµÄ·½³Ì£¬Èô²»´æÔÚÔò˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¹ýÍÖÔ²
x2
6
+
y2
5
=1
ÄÚµÄÒ»µãP£¨2£¬-1£©µÄÏÒ£¬Ç¡ºÃ±»µãPƽ·Ö£¬ÔòÕâÌõÏÒËùÔÚÖ±Ïß·½³Ì£¨¡¡¡¡£©
A£®y=
5
3
x-
5
6
B£®y=
5
3
x-
13
3
C£®y=-
5
3
x+
5
6
D£®y=
5
3
x+
11
6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

yÖáÉÏÁ½¶¨µãB1£¨0£¬b£©¡¢B2£¨0£¬-b£©£¬xÖáÉÏÁ½¶¯µãM£¬N£®PΪB1MÓëB2NµÄ½»µã£¬µãM£¬NµÄºá×ø±ê·Ö±ðΪXM¡¢XN£¬ÇÒʼÖÕÂú×ãXMXN=a2£¨a£¾b£¾0ÇÒΪ³£Êý£©£¬ÊÔÇ󶯵ãPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

¹ýÖ±½Ç×ø±êƽÃæxOyÖеÄÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãF×÷Ò»ÌõÇãб½ÇΪ
¦Ð
4
µÄÖ±ÏßÓëÅ×ÎïÏßÏཻÓÚA¡¢BÁ½µã£®
£¨1£©ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©ÊÔÓÃp±íʾA¡¢BÖ®¼äµÄ¾àÀ룻
£¨3£©µ±p=2ʱ£¬Çó¡ÏAOBµÄÓàÏÒÖµ£®
²Î¿¼¹«Ê½£º£¨xA2+yA2£©£¨xB2+yB2£©=xAxB[xAxB+2p£¨xA+xB£©+4p2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÍÖÔ²mx2+ny2=1ÓëÖ±Ïßx+y=1½»ÓÚM£¬NÁ½µã£¬MNµÄÖеãΪP£¬ÇÒOPµÄбÂÊΪ
2
2
£¬Ôò
m
n
µÄֵΪ£¨¡¡¡¡£©
A£®
2
2
B£®
2
2
3
C£®
9
2
2
D£®
2
3
27

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨BÌ⣩ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬³¤Ö᳤Ϊ2
3
£¬ÀëÐÄÂÊΪ
3
3
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãA£¨-1£¬1£©£¬¹ýÔ­µãOµÄÖ±Ïß½»ÍÖÔ²ÓÚµãB£¬C£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßy2=-xÓëÖ±Ïßy=k£¨x+1£©ÏཻÓÚA¡¢BÁ½µã£®
£¨1£©ÇóÖ¤£ºOA¡ÍOB£»
£¨2£©µ±¡÷OABµÄÃæ»ýµÈÓÚ
10
ʱ£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£®
£¨1£©ÈôÍÖÔ²µÄ³¤Ö᳤Ϊ4£¬ÀëÐÄÂÊΪ
3
2
£¬ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Éè¹ý¶¨µãM£¨0£¬2£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÇÒ¡ÏAOBΪÈñ½Ç£¨ÆäÖÐOΪ×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄбÂÊkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸