精英家教网 > 高中数学 > 题目详情
f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f=( ).
A.-B.-C.D.
A
fff=-f=-2×=-.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于(  )
A.{x|x≤0或1≤x≤4}
B.{x|0≤x≤4}
C.{x|x≤4}
D.{x|0≤x≤1或x≥4}

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=e|xa|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ex(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别
、4m,不考虑树的粗细,现在用16m长的篱笆, 借助墙角围成一个矩形的共圃ABCD,设此矩形花圃的面积为Sm2,S的最大值为,若将这棵树围在花圃中,则函数的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在,使不等式成立,则实数的最小值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数有如下性质:若常数,则函数在上是减函数,在 上是增函数。已知函数为常数),当时,若对任意,都有,则实数的取值范围是                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的图象可能是

查看答案和解析>>

同步练习册答案