精英家教网 > 高中数学 > 题目详情

【题目】已知函数). 

(1)若在其定义域内单调递增,求实数的取值范围;

(2)若,且有两个极值点 ),求取值范围.

【答案】(1);(2)

【解析】试题分析:函数在某区间上单调递增,说明函数的导数大于或等于0在该区间上恒成立,分离参数m,利用极值原理求出参数m的取值范围;当有两个极值点为方程的两个根,根据根与系数关系找出与系数的关系,根据m的范围解出的范围,表示出,根据减元,利用构造函数法求出其取值范围.

试题解析:

(1)的定义域为 在定义域内单调递增,

,即上恒成立,

由于,所以,实数的取值范围是.

(2)由(1)知,当有两个极值点,此时 ,∴

因为,解得

由于,于是

.

,则

上单调递减,

.

.

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数图象上不同两点 处切线的斜率分别是 ,规定为线段的长度)叫做曲线在点之间的“弯曲度”,给出以下命题:

①函数图象上两点的横坐标分别为1和2,则

②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;

③设点 是抛物线上不同的两点,则

④设曲线是自然对数的底数)上不同两点 ,且,若恒成立,则实数的取值范围是

其中真命题的序号为__________.(将所有真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数.

)求的单调区间和极值;

)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于AB的点,直线PC⊥平面ABCEF分别是PAPC的中点.

(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;

(2)AB=PC=2,BC=1,求三棱锥P-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数的解析式;
(2)设 π<x< π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断f(x)的奇偶性并证明;
(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;
(3)若0<m<1,使f(x)的值域为[logmm(β﹣1),logmm(α﹣1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别是,已知.

(1)求角的大小;

(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}中,a1=1且a1 , a3 , a9成等比数列, (Ⅰ)求数列{an}的通项公式
(Ⅱ)设bn=n2 求数列[bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为 b.
(1)求椭圆C的离心率;
(2)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.

查看答案和解析>>

同步练习册答案